Skip to main content
Log in

The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This review discusses the recent trends in the research over the last 30 years to use clay minerals in natural and modified forms for removing different toxic organic/inorganic pollutants. The natural and modified forms of clay minerals have an exceptional ability to remove different contaminants. However, the modification methods can improve the clay mineral adsorption properties that consequently increase more adsorption sites and functional groups to adsorb different environmental pollutants. This review shows the importance of modification methods and more extension of novel clay preparation based on nanotechnology which could raise the control of pollution. The syntheses of functionalized clays such as pillared clays and porous clay heterostructures introduce the new class of heterostructure materials with high adsorption capacity, capability, and selectivity. Due to the acceptable properties of heterostructure materials including high specific surface area, thermal and mechanical stability, and the existence of multifunctional groups to selective adsorption, this review collects more literature of research related to environmental protection issues. However, it is expected much attention to get a better understanding of the adsorption mechanism, regeneration, and recovery process of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This manuscript is a review paper and data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Abedi T, Mojiri A (2019) Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environ Technol Innov 16:100472. https://doi.org/10.1016/j.eti.2019.100472

    Article  Google Scholar 

  • Abeysinghe S (2012) Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications

  • Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37:1619–1627

    Article  CAS  Google Scholar 

  • Aghazadeh V, Barakan S, Bidari E (2020) Determination of surface protonation-deprotonation behavior, surface charge, and total surface site concentration for natural, pillared and porous nano bentonite heterostructure. J Mol Struct 1204:127570. https://doi.org/10.1016/j.molstruc.2019.127570

    Article  CAS  Google Scholar 

  • Aguiar J, Cecilia J, Tavares P, Azevedo D, Castellón ER, Lucena S, Silva I (2017) Adsorption study of reactive dyes onto porous clay heterostructures. Appl Clay Sci 135:35–44

    Article  CAS  Google Scholar 

  • Ahmad R, Mirza A (2017) Inulin-folic acid/bentonite: a novel nanocomposite for confiscation of Cu(II) from synthetic and industrial wastewater. J Mol Liq 241:489–499. https://doi.org/10.1016/j.molliq.2017.05.125

    Article  CAS  Google Scholar 

  • Ahmadi A, Foroutan R, Esmaeili H, Tamjidi S (2020) The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. Environ Sci Pollut Res 27:14044–14057. https://doi.org/10.1007/s11356-020-07756-x

    Article  CAS  Google Scholar 

  • Ai L, Li M, Li L (2011) Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. J Chem Eng Data 56:3475–3483

    Article  CAS  Google Scholar 

  • Ajemba RO (2012) Modification of the physico-chemical properties of Udi clay mineral to enhance its adsorptive capacity Pelagia Research Library. Adv Appl Sci Res 3:2042–2049

    CAS  Google Scholar 

  • Akbulut S, Nese Kurt Z, Arasan S (2012) Surfactant modified clays consistency limits and contact angles. Earth Sci Res J 16:95–101

    Google Scholar 

  • Ake CL, Mayura K, Huebner H, Bratton GR, Phillips TD (2001) Development of porous clay-based composites for the sorption of lead from water. J Toxicol Environ Health A 63:459–475

    Article  CAS  Google Scholar 

  • Ali I, Gupta V (2006) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  CAS  Google Scholar 

  • Alkan M, Kalay B, Doğan M, Demirbaş Ö (2008) Removal of copper ions from aqueous solutions by kaolinite and batch design. J Hazard Mater 153:867–876

    Article  CAS  Google Scholar 

  • Amonette JE, Zelazny LW, Luxmoore RJ (1994) Quantitative methods in soil mineralogy: proceedings of a symposium sponsored by Division S-9 of the Soil Science Society of America: the symposium was held in San Antonio, Texas on October 23-24, 1990. Soil Science Society of America

  • Anggraini M et al (2014) Antibiotic detoxification from synthetic and real effluents using a novel MTAB surfactant-montmorillonite (organoclay) sorbent. RSC Adv 4:16298–16311

    Article  CAS  Google Scholar 

  • Anirudhan T, Jalajamony S, Sreekumari S (2012) Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Appl Clay Sci 65:67–71

    Article  CAS  Google Scholar 

  • Aouad A, Mandalia T, Bergaya F (2005) A novel method of Al-pillared montmorillonite preparation for potential industrial up-scaling. Appl Clay Sci 28:175–182

    Article  CAS  Google Scholar 

  • Atia AA (2005) Studies on the interaction of mercury (II) and uranyl (II) with modified chitosan resins. Hydrometallurgy 80:13–22

    Article  CAS  Google Scholar 

  • Ayari F, Manai G, Khelifi S, Trabelsi-Ayadi M (2019) Treatment of anionic dye aqueous solution using Ti, HDTMA and Al/Fe pillared bentonite. Essay to regenerate the adsorbent. J Saudi Chem Soc 23:294–306. https://doi.org/10.1016/j.jscs.2018.08.001

    Article  CAS  Google Scholar 

  • Aytas S, Yurtlu M, Donat R (2009) Adsorption characteristic of U (VI) ion onto thermally activated bentonite. J Hazard Mater 172:667–674

    Article  CAS  Google Scholar 

  • Baloyi J, Ntho T, Moma J (2018) Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review. RSC Adv 8:5197–5211

    Article  CAS  Google Scholar 

  • Barakan S, Aghazadeh V (2019a) FeAl12-polyoxocations intercalated nano-bentonite fabrication in concentrated suspension using one-step ultrasonic-microwave irradiation for arsenic removal from alkaline wastewater. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02545-7

  • Barakan S, Aghazadeh V (2019b) Separation and characterisation of montmorillonite from a low-grade natural bentonite: using a non-destructive method. Micro Nano Lett 14:688–693

    Article  CAS  Google Scholar 

  • Barakan S, Aghazadeh V (2019c) Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine wastewater. J Hazard Mater 378:120779. https://doi.org/10.1016/j.jhazmat.2019.120779

    Article  CAS  Google Scholar 

  • Barakan S, Aghazadeh V (2019d) Synthesis and characterization of hierarchical porous clay heterostructure from Al, Fe-pillared nano-bentonite using microwave and ultrasonic techniques. Microporous Mesoporous Mater 278:138–148. https://doi.org/10.1016/j.micromeso.2018.11.031

    Article  CAS  Google Scholar 

  • Barakan S, Aghazadeh V, Samiee Beyragh A, Mohammadi S (2019) Thermodynamic, kinetic and equilibrium isotherm studies of As(V) adsorption by Fe(III)-impregnated bentonite. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00424-2

  • Barrer R, MacLeod D (1955) Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Trans Faraday Soc 51:1290–1300

    Article  CAS  Google Scholar 

  • Barshad I, Foscolos AE (1970) Factors affecting the rate of the interchange reaction of adsorbed H+ on the 2:1 clay minerals. Soil Sci 110:52–60

    Article  CAS  Google Scholar 

  • Baskaralingam P, Pulikesi M, Elango D, Ramamurthi V, Sivanesan S (2006) Adsorption of acid dye onto organobentonite. J Hazard Mater 128:138–144

    Article  CAS  Google Scholar 

  • Bée A, Obeid L, Mbolantenaina R, Welschbillig M, Talbot D (2017) Magnetic chitosan/clay beads: a magsorbent for the removal of cationic dye from water. J Magn Magn Mater 421:59–64. https://doi.org/10.1016/j.jmmm.2016.07.022

    Article  CAS  Google Scholar 

  • Begg JD, Zavarin M, Zhao P, Tumey SJ, Powell B, Kersting AB (2013) Pu (V) and Pu (IV) sorption to montmorillonite. Environ Sci Technol 47:5146–5153

    Article  CAS  Google Scholar 

  • Belhouchat N, Zaghouane-Boudiaf H, Viseras C (2017) Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl Clay Sci 135:9–15. https://doi.org/10.1016/j.clay.2016.08.031

    Article  CAS  Google Scholar 

  • Bendou S, Amrani M (2014) Effect of hydrochloric acid on the structural of sodic-bentonite clay. J Miner Mater Charact Eng 2014

  • Benhouria A, Islam MA, Zaghouane-Boudiaf H, Boutahala M, Hameed BH (2015) Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chem Eng J 270:621–630. https://doi.org/10.1016/j.cej.2015.02.030

    Article  CAS  Google Scholar 

  • Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science vol 1. Developments in clay science

  • Bergaya F, Hassoun N, Barrault J, Gatineau L (1993) Pillaring of synthetic hectorite by mixed [Al13-xFex] pillars. Clay Miner 28:109

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Gupta SS (2008) Adsorption of Fe (III), Co (II) and Ni (II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium. Colloids Surf A Physicochem Eng Asp 317:71–79

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Gupta SS (2009) Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe (II), Co (II) and Ni (II) from solution. Appl Clay Sci 46:216–221

    Article  CAS  Google Scholar 

  • Bojemueller E, Nennemann A, Lagaly G (2001) Enhanced pesticide adsorption by thermally modified bentonites. Appl Clay Sci 18:277–284

    Article  CAS  Google Scholar 

  • Bouchenafa-Saïb N, Khouli K, Mohammedi O (2007) Preparation and characterization of pillared montmorillonite: application in adsorption of cadmium. Desalination 217:282–290

    Article  CAS  Google Scholar 

  • Boudriche L, Calvet R, Hamdi B, Balard H (2011) Effect of acid treatment on surface properties evolution of attapulgite clay: an application of inverse gas chromatography. Colloids Surf A Physicochem Eng Asp 392:45–54

    Article  CAS  Google Scholar 

  • Bourg IC, Bourg AC, Sposito G (2003) Modeling diffusion and adsorption in compacted bentonite: a critical review. J Contam Hydrol 61:293–302

    Article  CAS  Google Scholar 

  • Bradley S, Kydd R (1993) Ga13, Al13, GaAl12, and chromium-pillared montmorillonites: acidity and reactivity for cumene conversion. J Catal 141:239–249

    Article  CAS  Google Scholar 

  • Bradley SM, Kydd RA, Brandt KK (1992) Pillared clay minerals as catalysts and catalyst supports. Stud Surf Sci Catal 73:287–290

    Article  CAS  Google Scholar 

  • Brindley G, Sempels R (1977) Preparation and properties of some hydroxy-aluminium beidellites. Clay Miner 12:229–237

    Article  CAS  Google Scholar 

  • Brusewitz AM, Weihed P (1994) Literature review. GFF 116:22–30. https://doi.org/10.1080/11035899409546137

    Article  Google Scholar 

  • Buruga K, Song H, Shang J, Bolan N, Jagannathan TK, Kim K-H (2019) A review on functional polymer-clay based nanocomposite membranes for treatment of water. J Hazard Mater 379:120584. https://doi.org/10.1016/j.jhazmat.2019.04.067

    Article  CAS  Google Scholar 

  • Caglar B, Cubuk O, Demir E, Coldur F, Catir M, Topcu C, Tabak A (2015) Characterization of AlFe-pillared Unye bentonite: a study of the surface acidity and catalytic property. J Mol Struct 1089:59–65

    Article  CAS  Google Scholar 

  • Calabi Floody M, Theng B, Reyes P, Mora M (2009) Natural nanoclays: applications and future trends–a Chilean perspective. Clay Miner 44:161–176

    Article  CAS  Google Scholar 

  • Carrado K, Suib S, Skoularikis N, Coughlin R (1986a) Chromium (III)-doped pillared clays (PILC’s). Inorg Chem 25:4217–4221

    Article  CAS  Google Scholar 

  • Carrado KA, Kostapapas A, Suib SL, Coughlin RW (1986b) Physical and chemical stabilities of pillared clays containing transition metal ions. Solid State Ionics 22:117–125

    Article  CAS  Google Scholar 

  • Casey WH (2006) Large aqueous aluminum hydroxide molecules. Chem Rev 106:1–16

    Article  CAS  Google Scholar 

  • Casey WH, Phillips BL, Furrer G (2001) Aqueous aluminum polynuclear complexes and nanoclusters: a review. Rev Mineral Geochem 44:167–190

    Article  CAS  Google Scholar 

  • Catrinescu C, Arsene D, Apopei P, Teodosiu C (2012) Degradation of 4-chlorophenol from wastewater through heterogeneous Fenton and photo-Fenton process, catalyzed by Al–Fe PILC. Appl Clay Sci 58:96–101

    Article  CAS  Google Scholar 

  • Cecilia J, García-Sancho C, Vilarrasa-García E, Jiménez-Jiménez J, Rodriguez-Castellón E (2018) Synthesis, characterization, uses and applications of porous clays heterostructures: a review. Chem Rec 18:1085–1104

    Article  CAS  Google Scholar 

  • Chang P-H, Li Z, Jiang W-T, Sarkar B (2019) Chapter 7 - Clay minerals for pharmaceutical wastewater treatment. In: Mercurio M, Sarkar B, Langella A (eds) Modified Clay and zeolite nanocomposite materials. Elsevier, pp 167–196. https://doi.org/10.1016/B978-0-12-814617-0.00011-6

  • Chang YS, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, Abdullah EC (2020) Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-09423-7

  • Chauhan M, Saini VK, Suthar S (2020) Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. J Clean Prod 258:120686. https://doi.org/10.1016/j.jclepro.2020.120686

    Article  CAS  Google Scholar 

  • Chen R, Peng F, Su S (2008) Synthesis and characterization of novel swelling tunable oligomeric poly (styrene-co-acrylamide) modified clays. J Appl Polym Sci 108:2712–2717

    Article  CAS  Google Scholar 

  • Chen Y, Zhu C, Sun Y, Duan H, Ye W, Wu D (2012) Adsorption of La (III) onto GMZ bentonite: effect of contact time, bentonite content, pH value and ionic strength. J Radioanal Nucl Chem 292:1339–1347

    Article  CAS  Google Scholar 

  • Chen Y-G, He Y, Ye W-M, Jia L-Y (2015) Competitive adsorption characteristics of Na (I)/Cr (III) and Cu (II)/Cr (III) on GMZ bentonite in their binary solution. J Ind Eng Chem 26:335–339

    Article  CAS  Google Scholar 

  • Cheng S (1999) From layer compounds to catalytic materials. Catal Today 49:303–312

    Article  CAS  Google Scholar 

  • Chmielarz L, Gil B, Kuśtrowski P, Piwowarska Z, Dudek B, Michalik M (2009) Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica–titania pillars—synthesis and characterization. J Solid State Chem 182:1094–1104

    Article  CAS  Google Scholar 

  • Cho D-W, Jeon B-H, Chon C-M, Kim Y, Schwartz FW, Lee E-S, Song H (2012) A novel chitosan/clay/magnetite composite for adsorption of Cu (II) and As (V). Chem Eng J 200:654–662

    Article  CAS  Google Scholar 

  • Christidis G, Scott P, Dunham A (1997) Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl Clay Sci 12:329–347

    Article  CAS  Google Scholar 

  • Churchman GJ, Gates WP, Theng BKG, Yuan G (2006) Chapter 11.1 Clays and clay minerals for pollution control. In: Faïza Bergaya BKGT, Gerhard L (eds) Developments in clay science, Volume 1. Elsevier, pp 625–675. https://doi.org/10.1016/S1572-4352(05)01020-2

  • Cinku K, Baysal B (2014) Investigation of adsorption behavior of phosphonium salts onto Na-montmorillonite. Physicochem Problems Miner Process 50

  • Coelho AV, Poncelet G (1991) Gallium, aluminium and mixed gallium-aluminium pillared montmorillonite: preparation and characterization. Appl Catal 77:303–314

    Article  Google Scholar 

  • Coker E, Jansen J, Karge H, Weitkamp J (1998) Molecular sieves science and technology Vol 1. Springer, New York

    Google Scholar 

  • Coles CA, Yong RN (2002) Aspects of kaolinite characterization and retention of Pb and Cd. Appl Clay Sci 22:39–45

    Article  CAS  Google Scholar 

  • Cool P, Ahenach J, Collart O, Vansant E (2000) A1-modified porous clay heterostructures with combined micro and mesoporosity. Stud Surf Sci Catal 129:409–416

    Article  CAS  Google Scholar 

  • Cooper C, Jiang JQ, Ouki S (2002) Preliminary evaluation of polymeric Fe-and Al-modified clays as adsorbents for heavy metal removal in water treatment. J Chem Technol Biotechnol 77:546–551

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  CAS  Google Scholar 

  • Cruz-Guzmán M, Celis R, Hermosin MC, Koskinen W, Nater E, Cornejo J (2006) Heavy metal adsorption by montmorillonites modified with natural organic cations. Soil Sci Soc Am J 70:215–221

    Article  CAS  Google Scholar 

  • Das N, Jana RK (2006) Adsorption of some bivalent heavy metal ions from aqueous solutions by manganese nodule leached residues. J Colloid Interface Sci 293:253–262

    Article  CAS  Google Scholar 

  • Deng Y, Dixon JB, White GN (2006) Bonding mechanisms and conformation of poly (ethylene oxide)-based surfactants in interlayer of smectite. Colloid Polym Sci 284:347–356

    Article  CAS  Google Scholar 

  • Dentel S, Bottero J, Khatib K, Demougeot H, Duguet J, Anselme C (1995) Sorption of tannic acid, phenol, and 2, 4, 5-trichlorophenol on organoclays. Water Res 29:1273–1280

    Article  CAS  Google Scholar 

  • Dias Filho NL, do Carmo DR (2006) Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury (II). Talanta 68:919–927

    Article  CAS  Google Scholar 

  • Ding Y, Guo C, Dong JY, Wang Z (2006) Novel organic modification of montmorillonite in hydrocarbon solvent using ionic liquid-type surfactant for the preparation of polyolefin–clay nanocomposites. J Appl Polym Sci 102:4314–4320

    Article  CAS  Google Scholar 

  • Doff D, Gangas N, Allan J, Coey J (1988) Preparation and characterization of iron oxide pillared montmorillonite. Clay Miner 23:367–377

    Article  Google Scholar 

  • Dong J, Li B, Bao Q (2017) In situ reactive zone with modified Mg(OH)2 for remediation of heavy metal polluted groundwater: immobilization and interaction of Cr(III), Pb(II) and Cd(II). J Contam Hydrol 199:50–57. https://doi.org/10.1016/j.jconhyd.2017.02.005

    Article  CAS  Google Scholar 

  • El Achaby M, Ennajih H, Arrakhiz F, El Kadib A, Bouhfid R, Essassi E, Qaiss A (2013) Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of polymer organoclay nanocomposites. Compos Part B 51:310–317

    Article  CAS  Google Scholar 

  • El Mouzdahir Y, Elmchaouri A, Mahboub R, Gil A, Korili S (2010) Equilibrium modeling for the adsorption of methylene blue from aqueous solutions on activated clay minerals. Desalination 250:335–338

    Article  CAS  Google Scholar 

  • El Ouardi M, Qourzal S, Alahiane S, Assabbane A, Douch J (2015) Effective removal of nitrates ions from aqueous solution using new clay as potential low-cost adsorbent. JEAS 5:178–190

    Article  CAS  Google Scholar 

  • El Ouardi M et al (2019) Efficient removal of p-nitrophenol from water using montmorillonite clay: insights into the adsorption mechanism, process optimization, and regeneration. Environ Sci Pollut Res 26:19615–19631. https://doi.org/10.1007/s11356-019-05219-6

    Article  CAS  Google Scholar 

  • Eren E, Gumus H (2011) Characterization of the structural properties and Pb (II) adsorption behavior of iron oxide coated sepiolite. Desalination 273:276–284

    Article  CAS  Google Scholar 

  • Eslinger E, Pevear DR (1988) Clay minerals for petroleum geologists and engineers. Society of Economic Paleontologists and Mineralogis ts

  • Espantaleon A, Nieto J, Fernandez M, Marsal A (2003) Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl Clay Sci 24:105–110

    Article  CAS  Google Scholar 

  • Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chemical engineering journal 312:336–350

    Article  CAS  Google Scholar 

  • Fathima A, Rao JR, Unni Nair B (2012) Trivalent chromium removal from tannery effluent using kaolin-supported bacterial biofilm of Bacillus sp isolated from chromium polluted soil. J Chem Technol Biotechnol 87:271–279

    Article  CAS  Google Scholar 

  • Fernandes C, Benfeito S, Fonseca A, Oliveira C, Garrido J, Garrido EM, Borges F (2017) 15 - Photodamage and photoprotection: toward safety and sustainability through nanotechnology solutions. In: Grumezescu AM (ed) Food preservation. Academic Press, pp 527–565. https://doi.org/10.1016/B978-0-12-804303-5.00015-8

  • Fjordbøge AS, Riis C, Christensen AG, Kjeldsen P (2012) ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. Site description and contaminant source mass reduction. J Contam Hydrol 140-141:56–66. https://doi.org/10.1016/j.jconhyd.2012.08.007

    Article  CAS  Google Scholar 

  • Foroutan R et al (2019) Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents. Environ Sci Pollut Res 26:29748–29762. https://doi.org/10.1007/s11356-019-06070-5

    Article  CAS  Google Scholar 

  • Fu L et al (2017) Phyllosilicate nanoclay-based aqueous nanoparticle sorbent for CO2 capture at ambient conditions. Appl Mater Today 9:451–455. https://doi.org/10.1016/j.apmt.2017.09.009

    Article  Google Scholar 

  • Fujishiro Y, Uchida S, Sato T (1999) Synthesis and photochemical properties of semiconductor pillared layered compounds. Int J Inorg Mater 1:67–72

    Article  CAS  Google Scholar 

  • Galarneau A, Barodawalla A, Pinnavaia TJ (1995) Porous clay heterostructures formed by gallery-templated synthesis. Nature 374:529

    Article  CAS  Google Scholar 

  • Gao Z, Peng X, Zhang H, Luan Z, Fan B (2009) Montmorillonite–Cu (II)/Fe (III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination 247:337–345

    Article  CAS  Google Scholar 

  • Garea SA, Mihai AI, Vasile E, Voicu G (2014) Synthesis and characterization of porous clay heterostructures. Rev Chim 65:649–656

    CAS  Google Scholar 

  • Gecol H, Miakatsindila P, Ergican E, Hiibel SR (2006) Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination 197:165–178

    Article  CAS  Google Scholar 

  • Georgescu A-M, Nardou F, Zichil V, Nistor ID (2018) Adsorption of lead(II) ions from aqueous solutions onto Cr-pillared clays. Appl Clay Sci 152:44–50. https://doi.org/10.1016/j.clay.2017.10.031

    Article  CAS  Google Scholar 

  • Giese RF, Van Oss CJ (2002) Colloid and surface properties of clays and related minerals vol 105. CRC press

  • Gil A, Korili SA, Trujillano R, Vicente MA (2010) Pillared clays and related catalysts. Springer

  • Gregg SJ (1958) In surface phenomena in chemistry and biology Danielli J, Pankhust KGA; Riddiford AC (ed) Pergamon Press; London, p 195

  • Grim RE (1962) Applied clay mineralogy: McGraw-Hill Book Co. Inc, New York, p 321

  • Grim RE (1968) Clay mineralogy (2nd ed): McGraw-Hill Book Co. Inc., New York, p 464

  • Guggenheim S, Martin R (1995) Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clay Clay Miner 43:255–256

    Article  CAS  Google Scholar 

  • Gunawan NS, Indraswati N, Ju Y-H, Soetaredjo FE, Ayucitra A, Ismadji S (2010) Bentonites modified with anionic and cationic surfactants for bleaching of crude palm oil. Appl Clay Sci 47:462–464

    Article  CAS  Google Scholar 

  • Gupta V, Carrott P, Ribeiro Carrott M, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gwinn R, Norton P, Mchenry R (1993) Micropædia. In: In The New. Encyclopædia Britannica, Encyclopædia Britannica, Chicago

    Google Scholar 

  • Han H, Rafiq MK, Zhou T, Xu R, Mašek O, Li X (2019) A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater 369:780–796. https://doi.org/10.1016/j.jhazmat.2019.02.003

    Article  CAS  Google Scholar 

  • Hao Q-Q et al (2016) One-step green approach for synthesizing highly ordered pillaring materials via ultrafast transportation. Appl Clay Sci 124:137–142

    Article  CAS  Google Scholar 

  • Harward ME, Coleman NT (1954) Some properties of H-and Al-clays and exchange resins. Soil Science 78(3):163–88

    Article  Google Scholar 

  • Hayles J, Johnson L, Worthley C, Losic D (2017) 5 - Nanopesticides: a review of current research and perspectives. In: Grumezescu AM (ed) New pesticides and soil sensors. Academic Press, pp 193-225. https://doi.org/10.1016/B978-0-12-804299-1.00006-0

  • Heller-Kallai L, Bergaya F, Theng B, Lagaly G (2006) Handbook of clay science. Developments in Clay Science, Elsevier, Amsterdam

    Google Scholar 

  • Hosseini H, Shojaee-Aliabadi S, Hosseini SM, Mirmoghtadaie L (2017) Chapter 11 - Nanoantimicrobials in food industry. In: Grumezescu AM (ed) Oprea AE. Academic Press, Nanotechnology applications in food, pp 223–243. https://doi.org/10.1016/B978-0-12-811942-6.00011-X

    Chapter  Google Scholar 

  • Hu B, Luo H (2010) Adsorption of hexavalent chromium onto montmorillonite modified with hydroxyaluminum and cetyltrimethylammonium bromide. Appl Surf Sci 257:769–775

    Article  CAS  Google Scholar 

  • Humelnicu D, Ignat M, Suchea M (2015) Evaluation of adsorption capacity of montmorillonite-K10 and Al-pillared clay towards Pb2+, Cu2+ and Zn2+ ions. Acta Chim Slov 62:947–957

    Article  CAS  Google Scholar 

  • Hussin F, Aroua MK, Daud WMAW (2011) Textural characteristics, surface chemistry and activation of bleaching earth: a review. Chem Eng J 170:90–106

    Article  CAS  Google Scholar 

  • Jovanović N, Janaćković J (1991) Pore structure and adsorption properties of an acid-activated bentonite. Appl Clay Sci 6:59–68

    Article  Google Scholar 

  • Kalantari K, Ahmad MB, Masoumi HRF, Shameli K, Basri M, Khandanlou R (2015) Rapid and high capacity adsorption of heavy metals by Fe 3 O 4/montmorillonite nanocomposite using response surface methodology: preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study. J Taiwan Inst Chem Eng 49:192–198

    Article  CAS  Google Scholar 

  • Kan T, Jiang X, Zhou L, Yang M, Duan M, Liu P, Jiang X (2011) Removal of methyl orange from aqueous solutions using a bentonite modified with a new gemini surfactant. Appl Clay Sci 54:184–187

    Article  CAS  Google Scholar 

  • Karamanis D, Assimakopoulos P (2007) Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions. Water Res 41:1897–1906

    Article  CAS  Google Scholar 

  • Karamanis D, Aslanoglou X, Assimakopoulos P, Gangas N (2001) PIGE and XRF analysis of a nano-composite pillared layered clay material for nuclear waste applications. Nucl Instrum Methods Phys Res, Sect B 181:616–621

    Article  CAS  Google Scholar 

  • Karpiński B, Szkodo M (2015) Clay minerals–mineralogy and phenomenon of clay swelling in oil & gas industry. Adv Mater Sci 15:37–55

    Article  CAS  Google Scholar 

  • Kaur M, Singh M, Mukhopadhyay SS, Singh D, Gupta M (2015) Structural, magnetic and adsorptive properties of clay ferrite nanocomposite and its use for effective removal of Cr (VI) from water. J Alloys Compd 653:202–211

    Article  CAS  Google Scholar 

  • Kaviratna H, Pinnavaia TJ (1994) Acid hydrolysis of octahedral Mg2+ sites in 2:1 layered silicates: an assessment of edge attack and gallery access mechanisms. Clay Clay Miner 42:717–723

    Article  CAS  Google Scholar 

  • Kerr G, Zimmerman R, Fox Jr H, Wells F (1956) Degradation of hectorite by hydrogen ion. In: Clays and clay minerals: Proceedings of the Conference. National Academies, p 322

  • Kloprogge J (1998) Synthesis of smectites and porous pillared clay catalysts: a review. J Porous Mater 5:5–41

    Article  CAS  Google Scholar 

  • Komadel P (2003) Chemically modified smectites. Clay Minerals 38(1):127–138

  • Kónya J, Nagy N (2011) Sorption of dissolved mercury (II) species on calcium-montmorillonite: an unusual pH dependence of sorption process. J Radioanal Nucl Chem 288:447–454

    Article  CAS  Google Scholar 

  • Kooli F (2014) Porous clay heterostructures (PCHs) from Al 13-intercalated and Al 13-pillared montmorillonites: properties and heptane hydro-isomerization catalytic activity. Microporous Mesoporous Mater 184:184–192

    Article  CAS  Google Scholar 

  • Kooli F, Liu Y, Hbaieb K, Al-Faze R (2016) Characterization and catalytic properties of porous clay heterostructures from zirconium intercalated clay and its pillared derivatives. Microporous Mesoporous Mater 226:482–492

    Article  CAS  Google Scholar 

  • Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  CAS  Google Scholar 

  • Krim L, Nacer S, Bilango G (2006) Kinetics of chromium sorption on biomass fungi from aqueous solution. Am J Environ Sci 2:31–36

    Google Scholar 

  • Krishna B, Murty D, Prakash BJ (2001) Surfactant-modified clay as adsorbent for chromate. Appl Clay Sci 20:65–71

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734

    Article  CAS  Google Scholar 

  • Ksontini N, Najjar W, Ghorbel A (2008) Al–Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity. J Phys Chem Solids 69:1112–1115

    Article  CAS  Google Scholar 

  • Kubilay Ş, Gürkan R, Savran A, Şahan T (2007) Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13:41–51

    Article  CAS  Google Scholar 

  • Kumar ASK, Ramachandran R, Kalidhasan S, Rajesh V, Rajesh N (2012) Potential application of dodecylamine modified sodium montmorillonite as an effective adsorbent for hexavalent chromium. Chem Eng J 211:396–405

    Article  CAS  Google Scholar 

  • Kumararaja P, Manjaiah KM, Datta SC, Ahammed Shabeer TP, Sarkar B (2018) Chitosan-g-poly(acrylic acid)-bentonite composite: a potential immobilizing agent of heavy metals in soil. Cellulose 25:3985–3999. https://doi.org/10.1007/s10570-018-1828-x

    Article  CAS  Google Scholar 

  • Kurian M, Kavitha S (2016) A review on the importance of pillared interlayered clays in green chemical catalysis. IOSR J Appl Chem 1:47–54

    CAS  Google Scholar 

  • Kurian M, Sugunan S (2006) Wet peroxide oxidation of phenol over mixed pillared montmorillonites. Chem Eng J 115:139–146

    Article  CAS  Google Scholar 

  • Kyzas GZ (2012) A decolorization technique with spent “Greek coffee” grounds as zero-cost adsorbents for industrial textile wastewaters. Materials 5:2069–2087

    Article  CAS  Google Scholar 

  • Kyzas GZ, Kostoglou M, Vassiliou AA, Lazaridis NK (2011) Treatment of real effluents from dyeing reactor: experimental and modeling approach by adsorption onto chitosan. Chem Eng J 168:577–585

    Article  CAS  Google Scholar 

  • Kyzas GZ, Lazaridis NK, Mitropoulos AC (2012) Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: equilibrium, reuse and thermodynamic approach. Chem Eng J 189:148–159

    Article  CAS  Google Scholar 

  • Lahav N, Shani U, Shabtai J (1978) Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum-montmorillonite. Clay Clay Miner 26:107–115

    Article  CAS  Google Scholar 

  • Lamar RS (1951) Bentonite activation. California Mines 49:297–302

    Google Scholar 

  • Lasheen M, El-Sherif IY, Sabry DY, El-Wakeel S, El-Shahat M (2016) Adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite: equilibrium, isotherm and kinetic study. Desalin Water Treat 57:17421–17429

    Article  CAS  Google Scholar 

  • Ledoux MJ, Corcoran EW (1990) Synthesis and properties of new catalysts: utilization of novel materials components and synthetic techniques: extended abstracts (EA-24). Materials Research Society

    Google Scholar 

  • Lepoittevin B et al (2002) Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43:4017–4023

    Article  CAS  Google Scholar 

  • Li Z (1999) Oxyanion sorption and surface anion exchange by surfactant-modified clay minerals. J Environ Qual 28:1457–1463

    Article  CAS  Google Scholar 

  • Li Z, Bowman RS (2001) Retention of inorganic oxyanions by organo-kaolinite. Water Res 35:3771–3776

    Article  CAS  Google Scholar 

  • Li F, Rosen M (2000) Adsorption of gemini and conventional cationic surfactants onto montmorillonite and the removal of some pollutants by the clay. J Colloid Interface Sci 224:265–271

    Article  CAS  Google Scholar 

  • Li Y, Liu JR, Jia SY, Guo JW, Zhuo J, Na P (2012) TiO 2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chem Eng J 191:66–74

    Article  CAS  Google Scholar 

  • Li Y, Cai X, Guo J, Zhou S, Na P (2015) Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation. Appl Surf Sci 324:179–187

    Article  CAS  Google Scholar 

  • Lima Santos Klienchen Dalari B, Lisboa Giroletti C, Dalri-Cecato L, Gonzaga Domingos D, Nagel Hassemer ME (2020) Application of heterogeneous photo-fenton process using chitosan beads for textile wastewater treatment. J Environ Chem Eng 8:103893. https://doi.org/10.1016/j.jece.2020.103893

    Article  CAS  Google Scholar 

  • Liu Y, Gao M, Gu Z, Luo Z, Ye Y, Lu L (2014) Comparison between the removal of phenol and catechol by modified montmorillonite with two novel hydroxyl-containing Gemini surfactants. J Hazard Mater 267:71–80

    Article  CAS  Google Scholar 

  • Liu Q, Yang B, Zhang L, Huang R (2015) Adsorptive removal of Cr (VI) from aqueous solutions by cross-linked chitosan/bentonite composite Korean. J Chem Eng 32:1314–1322

    CAS  Google Scholar 

  • Liu C, Wu P, Zhu Y, Tran L (2016) Simultaneous adsorption of Cd 2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere 144:1026–1032

    Article  CAS  Google Scholar 

  • Long H, Wu P, Yang L, Huang Z, Zhu N, Hu Z (2014) Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. J Colloid Interface Sci 428:295–301

    Article  CAS  Google Scholar 

  • Low PF (1955) The role of aluminum in the titration of bentonite. Soil Science Society of America Journal 19(2):135–139

    Article  CAS  Google Scholar 

  • Luengo C, Puccia V, Avena M (2011) Arsenate adsorption and desorption kinetics on a Fe (III)-modified montmorillonite. J Hazard Mater 186:1713–1719

    Article  CAS  Google Scholar 

  • Ma L, Zhu J, Xi Y, Zhu R, He H, Liang X, Ayoko GA (2015) Simultaneous adsorption of Cd (ii) and phosphate on Al 13 pillared montmorillonite. RSC Adv 5:77227–77234

    Article  CAS  Google Scholar 

  • Maes N, Heylen I, Cool P, Vansant E (1997) The relation between the synthesis of pillared clays and their resulting porosity. Appl Clay Sci 12:43–60

    Article  CAS  Google Scholar 

  • Maged A, Ismael IS, Kharbish S, Sarkar B, Peräniemi S, Bhatnagar A (2020) Enhanced interlayer trapping of Pb(II) ions within kaolinite layers: intercalation, characterization, and sorption studies. Environ Sci Pollut Res 27:1870–1887. https://doi.org/10.1007/s11356-019-06845-w

    Article  CAS  Google Scholar 

  • Mana M, Ouali MS, Lindheimer M, de Menorval LC (2008) Removal of lead from aqueous solutions with a treated spent bleaching earth. J Hazard Mater 159:358–364

    Article  CAS  Google Scholar 

  • Manne S, Schäffer T, Huo Q, Hansma P, Morse D, Stucky G, Aksay I (1997) Gemini surfactants at solid−liquid interfaces: control of interfacial aggregate geometry. Langmuir 13:6382–6387

    Article  CAS  Google Scholar 

  • Maqueda C, dos Santos Afonso M, Morillo E, Sánchez RT, Perez-Sayago M, Undabeytia T (2013) Adsorption of diuron on mechanically and thermally treated montmorillonite and sepiolite. Appl Clay Sci 72:175–183

    Article  CAS  Google Scholar 

  • Maramis V, Kurniawan A, Ayucitra A, Sunarso J, Ismadji S (2012) Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Front Chem Sci Eng 6:58–66

    Article  CAS  Google Scholar 

  • Marco-Brown JL, Undabeytia T, Torres Sánchez RM, dos Santos Afonso M (2017) Slow-release formulations of the herbicide picloram by using Fe–Al pillared montmorillonite. Environ Sci Pollut Res 24:10410–10420. https://doi.org/10.1007/s11356-017-8699-9

    Article  CAS  Google Scholar 

  • Marković M et al (2019) Co(II) impregnated Al(III)-pillared montmorillonite–synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Appl Clay Sci 182:105276. https://doi.org/10.1016/j.clay.2019.105276

    Article  CAS  Google Scholar 

  • Mathers A, Weed S, Coleman N (1955) The effect of acid and heat treatment on montmorillonoids. Clays Clay Miner Natl Acad Sci Natl Res Council 395:403–412

    Google Scholar 

  • Matłok M, Petrus R, Warchoł JK (2015) Equilibrium study of heavy metals adsorption on kaolin. Ind Eng Chem Res 54:6975–6984

    Article  CAS  Google Scholar 

  • Mei JG, Yu SM, Cheng J (2004) Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe–Ti-PILC employing microwave irradiation. Catal Commun 5:437–440

    Article  CAS  Google Scholar 

  • Mena-Duran C et al (2007) Nitrate removal using natural clays modified by acid thermoactivation. Appl Surf Sci 253:5762–5766

    Article  CAS  Google Scholar 

  • Mishra T (2010) Transition metal oxide-pillared clay catalyst: synthesis to application. In: Pillared Clays and Related Catalysts. Springer, pp 99–128

  • Mishra T, Mahato DK (2016) A comparative study on enhanced arsenic (V) and arsenic (III) removal by iron oxide and manganese oxide pillared clays from ground water. J Environ Chem Eng 4:1224–1230

    Article  CAS  Google Scholar 

  • Mitchell I (1990) Pillared layered structures: current trends and applications vol 12725. Springer

  • Mnasri-Ghnimi S, Frini-Srasra N (2019) Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl Clay Sci 179:105151. https://doi.org/10.1016/j.clay.2019.105151

    Article  CAS  Google Scholar 

  • Mohammed AA, Abdel Moamen OA, Metwally SS, El-Kamash AM, Ashour I, Al-Geundi MS (2020) Utilization of modified attapulgite for the removal of Sr(II), Co(II), and Ni(II) ions from multicomponent system, Part I Kinetic Studies. Environ Sci Pollut Res 27:6824–6836. https://doi.org/10.1007/s11356-019-07292-3

    Article  CAS  Google Scholar 

  • Mohapatra D, Mishra D, Chaudhury GR, Das R (2007) Arsenic (V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J Environ Sci Health A 42:463–469

    Article  CAS  Google Scholar 

  • Mohsenipour M, Shahid S, Ebrahimi K (2015) Nitrate adsorption on clay kaolin: batch tests. J Chem 2015

  • Moura FCC, Rios RDF, Galvão BRL (2018) Emerging contaminants removal by granular activated carbon obtained from residual Macauba biomass. Environ Sci Pollut Res 25:26482–26492. https://doi.org/10.1007/s11356-018-2713-8

    Article  CAS  Google Scholar 

  • Mousavi S, Alemzadeh I, Vossoughi M (2006) Use of modified bentonite for phenolic adsorption in treatment of olive oil mill wastewater Iranian. J Sci Technol Trans B Eng 30:613–619

    CAS  Google Scholar 

  • Moussout H, Ahlafi H, Aazza M, El Akili C (2018) Performances of local chitosan and its nanocomposite 5%Bentonite/Chitosan in the removal of chromium ions (Cr(VI)) from wastewater. Int J Biol Macromol 108:1063–1073. https://doi.org/10.1016/j.ijbiomac.2017.11.018

    Article  CAS  Google Scholar 

  • Mukherjee S (2013a) Chemical properties of clay and thermodynamic aspects. In: The science of clays: applications in industry, engineering and environment. Springer Netherlands, Dordrecht, pp 46–53. https://doi.org/10.1007/978-94-007-6683-9_4

    Chapter  Google Scholar 

  • Mukherjee S (2013b) The science of clays. Applications in industry, engineering and Applications in industry, engineering and environment Capital Publishing Company, p 335. https://doi.org/10.1007/978-94-007-6683-9

  • Mukhopadhyay R et al (2020) Clay–polymer nanocomposites: progress and challenges for use in sustainable water treatment. J Hazard Mater 383:121125. https://doi.org/10.1016/j.jhazmat.2019.121125

  • Murray HH (2006a) Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays vol 2. Elsevier

  • Murray HH (2006b) Chapter 3 Geology and location of major industrial clay deposits. In: Haydn HM (ed) Developments in clay science, Volume 2. Elsevier, pp 33–65. https://doi.org/10.1016/S1572-4352(06)02003-4

  • Na P, Jia X, Yuan B, Li Y, Na J, Chen Y, Wang L (2010) Arsenic adsorption on Ti-pillared montmorillonite. J Chem Technol Biotechnol 85:708–714

    Article  CAS  Google Scholar 

  • Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nagy NM, Kónya J (2010) Interfacial chemistry of rocks and soils. CRC Press/Taylor & Francis

  • Nathaniel E, Kurniawan A, Soeteredjo FE, Ismadji S (2011) Organo-bentonite for the adsorption of Pb (II) from aqueous solution: temperature dependent parameters of several adsorption equations. Desalin Water Treat 36:280–288

    Article  CAS  Google Scholar 

  • Navratilova Z, Wojtowicz P, Vaculikova L, Sugarkova V (2007) Sorption of alkylammonium cations on montmorillonite. Acta Geodyn Geomater 4:59

    CAS  Google Scholar 

  • Occelli ML (1986) New routes to the preparation of pillared montmorillonite catalysts. J Mol Catal 35:377–389

    Article  CAS  Google Scholar 

  • Occelli ML, Finseth DH (1986) Preparation and characterization of pillared hectorite catalysts. J Catal 99:316–326

    Article  CAS  Google Scholar 

  • Öhman L-O, Forsling W (1981) Equilibrium and structural studies of silicon (IV) and aluminium (III) in aqueous solution. 3. A potentiometric study of aluminium (III) hydrolysis and aluminium (III) hydroxo carbonates in 0.6 M Na (Cl). Acta Chem Scand A 35:795–802

    Article  Google Scholar 

  • Okoye I, Obi C (2012) Thermodynamic and kinetic evaluations of some heavy metal ions on aluminum-pillared and unpillared bentonite clays. Int Arch Appl Sci Technol 3:58–67

    CAS  Google Scholar 

  • Olaya A, Moreno S, Molina R (2009a) Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: characterization and catalytic activity. Appl Catal A Gen 370:7–15

    Article  CAS  Google Scholar 

  • Olaya A, Moreno S, Molina R (2009b) Synthesis of pillared clays with aluminum by means of concentrated suspensions and microwave radiation. Catal Commun 10:697–701

    Article  CAS  Google Scholar 

  • Olu-Owolabi BI, Unuabonah EI (2011) Adsorption of Zn 2+ and Cu 2+ onto sulphate and phosphate-modified bentonite. Appl Clay Sci 51:170–173

    Article  CAS  Google Scholar 

  • Önal M, Sarıkaya Y (2007) Preparation and characterization of acid-activated bentonite powders. Powder Technol 172:14–18

    Article  CAS  Google Scholar 

  • Özcan AS, Erdem B, Özcan A (2005) Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids Surf A Physicochem Eng Asp 266:73–81

    Article  CAS  Google Scholar 

  • Pan D-q, Fan Q-h, Li P, Liu S-p, Wu W-s (2011) Sorption of Th (IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature. Chem Eng J 172:898–905

    Article  CAS  Google Scholar 

  • Panasyugin A, Kitikova N, Bondareva G, Rat’ko A (2003) Adsorption and structural properties of montmorillonite pillared with hydroxocomplexes of iron and rare-earth metals. Colloid J 65:478–481

    Article  CAS  Google Scholar 

  • Panda AK, Mishra BG, Mishra DK, Singh RK (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf A Physicochem Eng Asp 363:98–104

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interf Sci 138:24–58

    Article  CAS  Google Scholar 

  • Park Y, Frost RL, Ayoko GA, Morgan DL (2013) Adsorption of p-nitrophenol on organoclays. J Therm Anal Calorim 111:41–47

    Article  CAS  Google Scholar 

  • Patel A, Patra F, Shah N, Khedkar C (2018) Chapter 1 - Application of nanotechnology in the food industry: present status and future prospects. In: Grumezescu AM, Holban AM (eds) . Academic Press, Impact of nanoscience in the food industry, pp 1–27. https://doi.org/10.1016/B978-0-12-811441-4.00001-7

    Chapter  Google Scholar 

  • Patterson S, Murray H (1983) Clays. In: Industrial minerals and rocks. pp 519-585

  • Paver H, Marshall CE (1934) The role of aluminum in the reactions of the clays. Journal of the Society of Chemical Industry 53:750–760

    Article  Google Scholar 

  • Pereira F, Sousa K, Cavalcanti G, Fonseca M, de Souza AG, Alves A (2013) Chitosan-montmorillonite biocomposite as an adsorbent for copper (II) cations from aqueous solutions. Int J Biol Macromol 61:471–478

    Article  CAS  Google Scholar 

  • Pinto ML, Saini VK, Guil JM, Pires J (2014) Introduction of aluminum to porous clay heterostructures to modify the adsorption properties. Appl Clay Sci 101:497–502

    Article  CAS  Google Scholar 

  • Plaza F, Wen Y, Perone H, Xu Y, Liang X (2017) Acid rock drainage passive remediation: potential use of alkaline clay, optimal mixing ratio and long-term impacts. Sci Total Environ 576:572–585. https://doi.org/10.1016/j.scitotenv.2016.10.076

    Article  CAS  Google Scholar 

  • Poetsch M, Lippold H (2016) Effects of ionic strength and fulvic acid on adsorption of Tb(III) and Eu(III) onto clay. J Contam Hydrol 192:146–151. https://doi.org/10.1016/j.jconhyd.2016.07.006

    Article  CAS  Google Scholar 

  • Pusch R (2006) Chapter 6 Mechanical properties of clays and clay minerals. In: Faïza Bergaya BKGT, Gerhard L (eds) Developments in clay science, Volume 1. Elsevier, pp 247–260. https://doi.org/10.1016/S1572-4352(05)01006-8

  • Rao RAK, Kashifuddin M (2012) Adsorption properties of coriander seed powder (Coriandrum sativum): extraction and pre-concentration of Pb (II), Cu (II) and Zn (II) ions from aqueous solution. Adsorpt Sci Technol 30:127–146

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Rhodes CN, Brown DR (1992) Structural characterisation and optimisation of acid-treated montmorillonite and high-porosity silica supports for ZnCl2 alkylation catalysts. J Chem Soc Faraday Trans 88:2269–2274

    Article  CAS  Google Scholar 

  • Rouse JH, Ferguson GS (2007) Does water swell the ordered domains in polyelectrolyte/clay multilayers? Clay Clay Miner 55:160–164

    Article  CAS  Google Scholar 

  • Sajidu S, Persson I, Masamba W, Henry E, Kayambazinthu D (2006) Removal of Cd 2+, Cr 3+, Cu 2+, Hg 2+, Pb 2+ and Zn 2+ cations and AsO 4 3-anions from aqueous solutions by mixed clay from Tundulu in Malawi and characterisation of the clay. Water SA 32:519–526

    CAS  Google Scholar 

  • Saleh MM (2006) On the removal of cationic surfactants from dilute streams by granular charcoal. Water Res 40:1052–1060

    Article  CAS  Google Scholar 

  • Sanabria N, Álvarez A, Molina R, Moreno S (2008) Synthesis of pillared bentonite starting from the Al–Fe polymeric precursor in solid state, and its catalytic evaluation in the phenol oxidation reaction. Catal Today 133:530–533

    Article  CAS  Google Scholar 

  • Sarı A, Tüzen M (2013) Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous Mesoporous Mater 170:155–163

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2014) Cd (II) adsorption from aqueous solution by raw and modified kaolinite. Appl Clay Sci 88:63–72

    Article  CAS  Google Scholar 

  • Sarikaya Y, Önal M, Baran B, Alemdaroğlu T (2000) The effect of thermal treatment on some of the physicochemical properties of a bentonite. Clay Clay Miner 48:557–562

    Article  CAS  Google Scholar 

  • Schulze DG (2005) Clay minerals vol 1. Elsevier Ltd., Purdue University, West Lafayette, IN, USA

  • Schwanke A, Pergher S (2013) Porous heterostructured clays-recent advances and challenges-revisão. Cerâmica 59:576–587

    Article  CAS  Google Scholar 

  • Sennour R, Mimane G, Benghalem A, Taleb S (2009) Removal of the persistent pollutant chlorobenzene by adsorption onto activated montmorillonite. Appl Clay Sci 43:503–506

    Article  CAS  Google Scholar 

  • Shabanzade H, Salem A, Salem S (2019) Efficient removal of contaminants from waste lubricant oil by nano-porous bentonite produced via microwave-assisted rapid activation: process identifications and optimization. Environ Sci Pollut Res 26:23257–23267. https://doi.org/10.1007/s11356-019-05625-w

    Article  CAS  Google Scholar 

  • Shah KJ, Mishra MK, Shukla AD, Imae T, Shah DO (2013) Controlling wettability and hydrophobicity of organoclays modified with quaternary ammonium surfactants. J Colloid Interface Sci 407:493–499

    Article  CAS  Google Scholar 

  • Sharma M, Joshi M, Nigam S, Avasthi DK, Adelung R, Srivastava SK, Mishra YK (2019) Efficient oil removal from wastewater based on polymer coated superhydrophobic tetrapodal magnetic nanocomposite adsorbent. Appl Mater Today 17:130–141. https://doi.org/10.1016/j.apmt.2019.07.007

    Article  Google Scholar 

  • Shawabkeh RA, Al-Khashman OA, Al-Omari HS, Shawabkeh AF (2007) Cobalt and zinc removal from aqueous solution by chemically treated bentonite. Environmentalist 27:357–363

    Article  Google Scholar 

  • Shen Y-H (2001) Preparations of organobentonite using nonionic surfactants. Chemosphere 44:989–995

    Article  CAS  Google Scholar 

  • Siebdrath N, Ziskind G, Gitis V (2012) Cleaning secondary effluents with organoclays and activated carbon. J Chem Technol Biotechnol 87:51–57

    Article  CAS  Google Scholar 

  • Singer A (2002) Palygorskite and sepiolite-the enigmatic clay minerals. Berichte der Deutchen Ton-und Tonmineralgruppe 9:203–216

    Google Scholar 

  • Singh N, Nagpal G, Agrawal S (2018) Water purification by using adsorbents: a review. Environ Technol Innov 11:187–240

    Article  Google Scholar 

  • Singla P, Mehta R, Upadhyay SN (2012) Clay modification by the use of organic cations. Green Sustain Chem 2:21

    Article  CAS  Google Scholar 

  • Skoularikis N, Coughlin R, Kostapapas A, Carrado K, Suib S (1988) Catalytic performance of iron (III) and chromium (III) exchanged pillared clays. Appl Catal 39:61–76

    Article  CAS  Google Scholar 

  • Slejko FL (1985) Adsorption technology. A step-by-step approach to process evaluation and application. Dekker New York, Basel

    Google Scholar 

  • Soulé MEZ, Fernández MA, Montes ML, Suárez-García F, Torres Sánchez RM, Tascón JMD (2020) Montmorillonite- hydrothermal carbon nanocomposites: synthesis, characterization and evaluation of pesticides retention for potential treatment of agricultural wastewater. Colloids Surf A Physicochem Eng Asp 586:124192. https://doi.org/10.1016/j.colsurfa.2019.124192

    Article  CAS  Google Scholar 

  • Speight JG (2020) 9 - Pollution prevention. In: Speight JG (ed) Natural water remediation. Butterworth-Heinemann, pp 305–336. https://doi.org/10.1016/B978-0-12-803810-9.00009-7

  • Srasra E, Bergaya F, Van Damme H, Ariguib N (1989) Surface properties of an activated bentonite—decolorisation of rape-seed oils. Appl Clay Sci 4:411–421

    Article  CAS  Google Scholar 

  • Sterte J, Shabtai J (1987) Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum montmorillonites and fluorhectorites. Clay Clay Miner 35:429–439

    Article  CAS  Google Scholar 

  • Steudel A, Batenburg L, Fischer H, Weidler P, Emmerich K (2009) Alteration of swelling clay minerals by acid activation. Appl Clay Sci 44:105–115

    Article  CAS  Google Scholar 

  • Storaro L, Ganzerla R, Lenarda M, Zanoni R (1995) Vapour phase deep oxidation of chlorinated hydrocarbons catalyzed by pillared bentonites. J Mol Catal A Chem 97:139–143

    Article  CAS  Google Scholar 

  • Taymouri S, Varshosaz J (2016) Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv Biomed Res:5

  • Temuujin J, Senna M, Jadambaa T, Burmaa D, Erdenechimeg S, MacKenzie KJ (2006) Characterization and bleaching properties of acid-leached montmorillonite. J Chem Technol Biotechnol 81:688–693

    Article  CAS  Google Scholar 

  • Thakre D, Rayalu S, Kawade R, Meshram S, Subrt J, Labhsetwar N (2010) Magnesium incorporated bentonite clay for defluoridation of drinking water. J Hazard Mater 180:122–130

    Article  CAS  Google Scholar 

  • Thanos A, Katsou E, Malamis S, Psarras K, Pavlatou E, Haralambous K (2012) Evaluation of modified mineral performance for chromate sorption from aqueous solutions. Chem Eng J 211:77–88

    Article  CAS  Google Scholar 

  • Thomas JM, Thomas WJ (2014) Principles and practice of heterogeneous catalysis. John Wiley & Sons

  • Tian G, Wang W, Zong L, Kang Y, Wang A (2016) A functionalized hybrid silicate adsorbent derived from naturally abundant low-grade palygorskite clay for highly efficient removal of hazardous antibiotics. Chem Eng J 293:376–385. https://doi.org/10.1016/j.cej.2016.02.035

    Article  CAS  Google Scholar 

  • Tijing LD, Dizon JRC, Ibrahim I, Nisay ARN, Shon HK, Advincula RC (2019) 3D printing for membrane separation, desalination and water treatment. Appl Mater Today 100486. https://doi.org/10.1016/j.apmt.2019.100486

  • Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çelik A (2012) Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem Eng J 197:379–386

    Article  CAS  Google Scholar 

  • Tomar V, Kumar D (2013) A critical study on efficiency of different materials for fluoride removal from aqueous media. Chem Central J 7:51–51. https://doi.org/10.1186/1752-153X-7-51

    Article  CAS  Google Scholar 

  • Tomul F (2011a) Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite. Appl Surf Sci 258:1836–1848

    Article  CAS  Google Scholar 

  • Tomul F (2011b) Synthesis, characterization, and adsorption properties of Fe/Cr-pillared bentonites. Ind Eng Chem Res 50:7228–7240

    Article  CAS  Google Scholar 

  • Tomul F (2016) The effect of ultrasonic treatment on iron–chromium pillared bentonite synthesis and catalytic wet peroxide oxidation of phenol. Appl Clay Sci 120:121–134. https://doi.org/10.1016/j.clay.2015.11.007

    Article  CAS  Google Scholar 

  • Tomul F, Balci S (2009) Characterization of Al, Cr-pillared clays and CO oxidation. Appl Clay Sci 43:13–20

    Article  CAS  Google Scholar 

  • Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187:79–88

    Article  CAS  Google Scholar 

  • Toor M, Jin B, Dai S, Vimonses V (2015) Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. J Ind Eng Chem 21:653–661

    Article  CAS  Google Scholar 

  • Tran L, Wu P, Zhu Y, Liu S, Zhu N (2015) Comparative study of Hg (II) adsorption by thiol-and hydroxyl-containing bifunctional montmorillonite and vermiculite. Appl Surf Sci 356:91–101

    Article  CAS  Google Scholar 

  • Triolo I, Mottana A, Giampaolo C (1988) Synthesis and thermal behaviour of syngenite. Terra Cognita 8:79

    Google Scholar 

  • Unuabonah EI, El-Khaiary MI, Olu-Owolabi BI, Adebowale KO (2012) Predicting the dynamics and performance of a polymer–clay based composite in a fixed bed system for the removal of lead (II) ion. Chem Eng Res Des 90:1105–1115

    Article  CAS  Google Scholar 

  • Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760

    Article  CAS  Google Scholar 

  • Vaughan D, Lussier R (1980) Preparation of molecular sieves based on pillared interlayered clays (PILC). In: Proceedings of the 5th International Conference on Zeolites. Heyden, London, pp 94–101

  • Vaughan D, Lussier R, Magee Jr J US Patent 4,176,090, 1979 There is no corresponding record for this reference

  • Vaughan DE, Lussier RJ, Magee Jr JS (1981) Pillared interlayered clay products. Google Patents

  • Velde B (1995) Composition and mineralogy of clay minerals. In: Origin and mineralogy of clays. Springer, pp 8–42

  • Vicente M, Gil A, Bergaya F (2013a) Pillared clays and clay minerals. Handbook Clay Sci 5:524

    Google Scholar 

  • Vicente MA, Gil A, Bergaya F (2013b) Chapter 10.5 - Pillared clays and clay minerals. In: Faïza B, Gerhard L (eds) Developments in clay science, vol Volume 5. Elsevier, pp 523–557. https://doi.org/10.1016/B978-0-08-098258-8.00017-1

  • Vijayaraghavan K, Raja FD (2015) Interaction of vermiculite with Pb (II), Cd (II), Cu (II) and Ni (II) ions in single and quaternary mixtures. CLEAN Soil Air Water 43:1174–1180

    Article  CAS  Google Scholar 

  • Vilarrasa-García E, Cecilia J, Azevedo D, Cavalcante C Jr, Rodríguez-Castellón E (2017) Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture. Microporous Mesoporous Mater 249:25–33

    Article  CAS  Google Scholar 

  • Vinuth M, Naik HSB, Manjanna J (2015) Remediation of hexavalent chromium from aqueous solution using clay mineral Fe (II)–montmorillonite: encompassing anion exclusion impact. Appl Surf Sci 357:1244–1250

    Article  CAS  Google Scholar 

  • Wang K, Wang C, Li J, Su J, Zhang Q, Du R, Fu Q (2007a) Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites. Polymer 48:2144–2154

    Article  CAS  Google Scholar 

  • Wang W, Chen H, Wang A (2007b) Adsorption characteristics of Cd (II) from aqueous solution onto activated palygorskite Separation and purification. Technology 55:157–164

    CAS  Google Scholar 

  • Wang C, Jiang X, Zhou L, Xia G, Chen Z, Duan M, Jiang X (2013) The preparation of organo-bentonite by a new gemini and its monomer surfactants and the application in MO removal: a comparative study. Chem Eng J 219:469–477

    Article  CAS  Google Scholar 

  • Wang H, Tang H, Liu Z, Zhang X, Hao Z, Liu Z (2014) Removal of cobalt (II) ion from aqueous solution by chitosan–montmorillonite. J Environ Sci 26:1879–1884

    Article  Google Scholar 

  • Wang H, Wang X, Ma J, Xia P, Zhao J (2017a) Removal of cadmium (II) from aqueous solution: a comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater. J Hazard Mater 329:66–76. https://doi.org/10.1016/j.jhazmat.2017.01.025

    Article  CAS  Google Scholar 

  • Wang W, Tian G, Zong L, Zhou Y, Kang Y, Wang Q, Wang A (2017b) From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water. J Environ Sci 51:31–43. https://doi.org/10.1016/j.jes.2016.09.008

    Article  CAS  Google Scholar 

  • Wasse Bekele GF, Fernandez N (2014) Removal of nitrate ion from aqueous solution by modified Ethiopian bentonite clay. Int J Res Pharm Chem 4:192–201

    Google Scholar 

  • Weaver CE, Pollard LD (1973) Developments in sedimentology, the chemistry of clay minerals vol 15. Elsevier Scientific Publishing Company

  • Wilson I (2007) Applied clay mineralogy. Occurrences, processing and application of kaolins, bentonite, palygorskite-sepiolite, and common clays. Clay Miner Soc

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology 2011

  • Xu D, Zhou X, Wang X (2008) Adsorption and desorption of Ni 2+ on Na-montmorillonite: effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Appl Clay Sci 39:133–141

    Article  CAS  Google Scholar 

  • Yan L-G, Shan X-Q, Wen B, Owens G (2008) Adsorption of cadmium onto Al 13-pillared acid-activated montmorillonite. J Hazard Mater 156:499–508

    Article  CAS  Google Scholar 

  • Yang R, Tharappiwattananon N, Long R (1998) Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen. Appl Catal B Environ 19:289–304

    Article  CAS  Google Scholar 

  • Yang S, Gao M, Luo Z (2014) Adsorption of 2-Naphthol on the organo-montmorillonites modified by Gemini surfactants with different spacers. Chem Eng J 256:39–50

    Article  CAS  Google Scholar 

  • Yang Y, Zhu R, Chen Q, Fu H, He Q, Zhu J, He H (2020) A novel multifunctional adsorbent synthesized by modifying acidified organo-montmorillonite with iron hydroxides. Appl Clay Sci 185:105420. https://doi.org/10.1016/j.clay.2019.105420

    Article  CAS  Google Scholar 

  • Yapar S, Özbudak V, Dias A, Lopes A (2005) Effect of adsorbent concentration to the adsorption of phenol on hexadecyl trimethyl ammonium-bentonite. J Hazard Mater 121:135–139

    Article  CAS  Google Scholar 

  • Ye W, Zhao B, Gao H, Huang J, Zhang X (2016) Preparation of highly efficient and stable Fe, Zn, Al-pillared montmorillonite as heterogeneous catalyst for catalytic wet peroxide oxidation of Orange II. J Porous Mater 23:301–310

    Article  CAS  Google Scholar 

  • Yu R, Wang S, Wang D, Ke J, Xing X, Kumada N, Kinomura N (2008) Removal of Cd 2+ from aqueous solution with carbon modified aluminum-pillared montmorillonite. Catal Today 139:135–139

    Article  CAS  Google Scholar 

  • Yu D, Song W, Zhou B, Li W (2009) Assessment of Cu (II)-bearing montmorillonite on Cd adsorption. Biol Trace Elem Res 130:185–192

    Article  CAS  Google Scholar 

  • Yuan G, Wada S-I (2012) Allophane and imogolite nanoparticles in soil and their environmental applications. In: Nature’s Nanostructures. Pan Stanford Publishing, pp 493–516

  • Yuan P et al (2009) Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions. J Hazard Mater 166:821–829

    Article  CAS  Google Scholar 

  • Zhang J, Lu M, Wan J, Sun Y, Lan H, Deng X (2018) Effects of pH, dissolved humic acid and Cu2+ on the adsorption of norfloxacin on montmorillonite-biochar composite derived from wheat straw. Biochem Eng J 130:104–112. https://doi.org/10.1016/j.bej.2017.11.018

    Article  CAS  Google Scholar 

  • Zhao D, Yang Y, Guo X (1992) Preparation and characterization of hydroxysilicoaluminum pillared clays. Inorg Chem 31:4727–4732

    Article  CAS  Google Scholar 

  • Zhao D, Wang G, Yang Y, Guo X, Wang Q, Ren J (1993) Preparation and characterization of hydroxy-FeAl pillared clays. Clays and Clay Minerals 41(3):317–327

    Article  CAS  Google Scholar 

  • Zhao D, Yang Y, Guo X (1995) Synthesis and characterization of hydroxy-CrAl pillared clays. Zeolites 15:58–66

    Article  CAS  Google Scholar 

  • Zhao G, Zhang H, Fan Q, Ren X, Li J, Chen Y, Wang X (2010) Sorption of copper (II) onto super-adsorbent of bentonite–polyacrylamide composites. J Hazard Mater 173:661–668

    Article  CAS  Google Scholar 

  • Zhou C, Li X, Ge Z, Li Q, Tong D (2004) Synthesis and acid catalysis of nanoporous silica/alumina-clay composites. Catal Today 93:607–613

    Article  CAS  Google Scholar 

  • Zhou J, Wu P, Dang Z, Zhu N, Li P, Wu J, Wang X (2010) Polymeric Fe/Zr pillared montmorillonite for the removal of Cr (VI) from aqueous solutions. Chem Eng J 162:1035–1044

    Article  CAS  Google Scholar 

  • Zhu J, Cozzolino V, Fernandez M, Sánchez RMT, Pigna M, Huang Q, Violante A (2011a) Sorption of Cu on a Fe-deformed montmorillonite complex: effect of pH, ionic strength, competitor heavy metal, and inorganic and organic ligands. Appl Clay Sci 52:339–344

    Article  CAS  Google Scholar 

  • Zhu J, Wang T, Zhu R, Ge F, Wei J, Yuan P, He H (2011b) Novel polymer/surfactant modified montmorillonite hybrids and the implications for the treatment of hydrophobic organic compounds in wastewaters. Appl Clay Sci 51:317–322

    Article  CAS  Google Scholar 

  • Zohra B, Aicha K, Fatima S, Nourredine B, Zoubir D (2008) Adsorption of Direct Red 2 on bentonite modified by cetyltrimethylammonium bromide. Chem Eng J 136:295–305

    Article  CAS  Google Scholar 

  • Zou C, Jiang W, Liang J, Sun X, Guan Y (2019) Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite. Environ Sci Pollut Res 26:1315–1322. https://doi.org/10.1007/s11356-018-3652-0

    Article  CAS  Google Scholar 

  • Zuzana O, Annamária M, Silvia D, Jaroslav B (2012) Effect of thermal treatment on the bentonite properties. Arh Teh Nauke 7:49–56

    Google Scholar 

Download references

Funding

The authors received financial support from the Iranian Nanotechnology Initiative Council (INIC) with grant number of 127212, and Iranian Mines and Mining Industries Development and Renovation (IMIDRO) with grant number of 25154 to carry out this research.

Author information

Authors and Affiliations

Authors

Contributions

Author 1: Shima Barakan

• Wrote the paper and collected the research over the last 30 years related to the use of clay minerals in natural and modified forms for removing different toxic organic/inorganic pollutants.

Author 2: Valeh Aghazadeh

• Supervisor, co-wrote the paper and investigated research.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Valeh Aghazadeh.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barakan, S., Aghazadeh, V. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. Environ Sci Pollut Res 28, 2572–2599 (2021). https://doi.org/10.1007/s11356-020-10985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10985-9

Keywords

Navigation