Skip to main content
Log in

Performance enhancements of conventional solar still using reflective aluminium foil sheet and reflective glass mirrors: energy and exergy analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Many researchers are seeking simple and successful solutions to increase the output from the solar distiller. In this research work, reflective mirrors and reflective aluminium foil sheet were fixed on inner surfaces of the single-slope solar distiller, leading to more water production. The presence of reflective mirrors and reflective aluminium foil sheet on inner surfaces of the solar distillate permits the reflection of solar radiation falling inside the basin. Experiments were carried out on three stills: the first distiller is conventional solar still with black painted walls (CSS-BPW); the second distiller is conventional solar still with reflective aluminium foil sheet walls (CSS-RAFW); and the third distiller is conventional solar still with reflective glass mirror walls (CSS-RGMW). The maximum total drinking water productions from the CSS, CSS-RAFW and the CSS-RGMW are 3.41, 5.1 and 5.54 kg/m2, respectively. Compared to the CSS-BPW, the production of drinking water was increased by 68.57% when using the reflective glass mirrors and 48.57% when using the reflective aluminium foil sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CrSS:

corrugated solar still

CSS-BPW:

conventional solar still with black painted walls

CSS-RAFW:

conventional solar still with reflective aluminium foil sheet walls

CSS-RGMW:

conventional solar still with reflective glass mirror walls

EHTC:

evaporative heat transfer coefficient

[I(t)]:

solar intensity

Ta :

ambience temperature

Ts.w :

saline water temperature

Tc.c :

collector cover temperature

References

  • Abdallah S, Badran O, Abu-Khader MM (2008) Performance evaluation of a modified design of a single slope solar still. Desalination 219(1-3):222–230

    Article  CAS  Google Scholar 

  • Abdullah A, Younes M, Omara Z, Essa F (2020) New design of trays solar still with enhanced evaporation methods–comprehensive study. Sol Energy 203:164–174

    Article  Google Scholar 

  • Achour L, Bouharkat M, Assas O, Behar O (2017) Hybrid model for estimating monthly global solar radiation for the Southern of Algeria:(Case study: Tamanrasset, Algeria). Energy 135:526–539

    Article  Google Scholar 

  • Al-Nimr MdA, Al-Ammari WA, Alkhalidi A (2019) A novel hybrid photovoltaics/thermoelectric cooler distillation system. Int J Energy Res 43(2):791–805

    Article  CAS  Google Scholar 

  • Attia MEH, Driss Z, Manokar AM, Sathyamurthy R (2020) Effect of aluminum balls on the productivity of solar distillate. J Energy Storage 30:101466

    Article  Google Scholar 

  • Attia MEH, Driss Z, Alagar K, Athikesavan MM, Sathyamurthy R (n.d.-a) Phosphate bags as energy storage materials for enhancement of solar still performance. Environ Sci Pollut Res:1–13

  • Attia MEH, Driss Z, Kabeel AE, Afzal A, Manokar AM, Sathyamurthy R (n.d.-b) Phosphate bed as energy storage materials for augmentation of conventional solar still productivity. Environ Prog Sustain Energy:e13581

  • Baccoli R, Mastino CC, Innamorati R, Serra L, Curreli S, Ghiani E, Ricciu R, Marini M (2015) A mathematical model of a solar collector augmented by a flat plate above reflector: optimum inclination of collector and reflector. Energy Procedia 81:205–214

    Article  Google Scholar 

  • Bahaidarah HM, Tanweer B, Gandhidasan P, Rehman S (2015) A combined optical, thermal and electrical performance study of a V-trough PV system—experimental and analytical investigations. Energies 8(4):2803–2827

    Article  Google Scholar 

  • Balachandran GB, David PW, Rajendran G, Ali MNA, Radhakrishnan V, Balamurugan R, Athikesavan M, Sathyamurthy R (2021) Investigation of performance enhancement of solar still incorporated with Gallus gallus domesticus cascara as sensible heat storage material. Environ Sci Pollut Res 28(1):611–624

    Article  Google Scholar 

  • Belhadj M, Benouaz T, Bekkouche SMEA (2016) Modeling of automatic reflectors for PV panel attached to commercial PV/T module. Int J Appl Eng Res 11(23):11309–11314

    Google Scholar 

  • Cheniti H, Cheniti M, Brahamia K (2020) Use of GIS and Moran’s I to support residential solid waste recycling in the city of Annaba, Algeria. Environ Sci Pollut Res:1–15

  • Chowdhury N (2016) Design and experimental validation of a photovoltaic-thermal (PVT) hybrid collector. Int J Renew Energy Res (IJRER) 6(4):1446–1453

    Google Scholar 

  • El-Agouz E-S, Athikesavan MM, Ramalingam RD, Sathyamurthy R, Prakash N, Prasad C (2019) Comparative analysis on freshwater yield from conventional basin-type single slope solar still with cement-coated red bricks: an experimental approach. Environ Sci Pollut Res:1–11

  • Ghadamgahi M, Ahmadi-Danesh-Ashtiani H, Delfani S (2020) Comparative study on the multistage solar still performance utilizing PCM in variable thicknesses. Int J Energy Res 44(6):4196–4210

    Article  CAS  Google Scholar 

  • Gnanaraj SJP, Velmurugan V (2019) An experimental study on the efficacy of modifications in enhancing the performance of single basin double slope solar still. Desalination 467:12–28

    Article  CAS  Google Scholar 

  • Gonzalo AP, Marugán AP, Márquez FPG (2019) A review of the application performances of concentrated solar power systems. Appl Energy 255:113893

    Article  Google Scholar 

  • Hanlon JF, Kelsey RJ (1998) Handbook of package engineering. Crc Press

  • Hassan H, Yousef MS, Ahmed MS, Fathy M (2020a) Energy, exergy, environmental, and economic analysis of natural and forced cooling of solar still with porous media. Environ Sci Pollut Res 27(30):38221–38240

    Article  CAS  Google Scholar 

  • Hassan H, Yousef MS, Fathy M (2020b) Productivity, exergy, exergoeconomic, and enviroeconomic assessment of hybrid solar distiller using direct salty water heating. Environ Sci Pollut Res:1–13

  • Hilarydoss S, Delhiraja K, Reddy KS, Philip L, Chand D, Benny B (2020) Thermal modeling, characterization, and enviro-economic investigations on inclined felt sheet solar distiller for seawater desalination. Environ Sci Pollut Res:1–17

  • Kabir F, Chowdhury S (2017) Arsenic removal methods for drinking water in the developing countries: technological developments and research needs. Environ Sci Pollut Res 24(31):24102–24120

    Article  CAS  Google Scholar 

  • Khechekhouche A, Benhaoua B, Manokar M, Sathyamurthy R, Driss Z (2020a) Sand dunes effect on the productivity of a single slope solar distiller. Heat Mass Transf 56(4):1117–1126

    Article  CAS  Google Scholar 

  • Khechekhouche A, Kabeel A, Benhaoua B, Attia MEH, El-Said EM (2020b) Traditional solar distiller improvement by a single external refractor under the climatic conditions of the El Oued region, Algeria. Desalin Water Treat 177:23–28

    Article  Google Scholar 

  • Kostić LT, Pavlović T, Pavlović Z (2010) Optimal design of orientation of PV/T collector with reflectors. Appl Energy 87(10):3023–3029

    Article  Google Scholar 

  • Kostic LT, Pavlovic TM, Pavlovic ZT (2010) Influence of reflectance from flat aluminum concentrators on energy efficiency of PV/thermal collector. Appl Energy 87(2):410–416

    Article  CAS  Google Scholar 

  • Kumar BS, Kumar S, Jayaprakash R (2008) Performance analysis of a “V” type solar still using a charcoal absorber and a boosting mirror. Desalination 229(1-3):217–230

    Article  CAS  Google Scholar 

  • Madhu B, Balasubramanian E, Sathyamurthy R, Nagarajan P, Mageshbabu D, Bharathwaaj R, Manokar AM (2018) Exergy analysis of solar still with sand heat energy storage. Appl Solar Energy 54(3):173–177

    Article  Google Scholar 

  • Malik K, Rahman SM, Khondaker AN, Abubakar IR, Aina YA, Hasan MA (2019) Renewable energy utilization to promote sustainability in GCC countries: policies, drivers, and barriers. Environ Sci Pollut Res 26(20):20798–20814

    Article  CAS  Google Scholar 

  • Manokar AM, Winston DP, Kabeel A, Sathyamurthy R (2018a) Sustainable fresh water and power production by integrating PV panel in inclined solar still. J Clean Prod 172:2711–2719

    Article  Google Scholar 

  • Manokar AM, Winston DP, Mondol JD, Sathyamurthy R, Kabeel A, Panchal H (2018b) Comparative study of an inclined solar panel basin solar still in passive and active mode. Sol Energy 169:206–216

    Article  Google Scholar 

  • Márquez FPG, Karyotakis A, Papaelias M (2018) Renewable energies: business outlook 2050. Springer

  • Mohd Rosli MA, Mat S, Sopian K, Sulaiman MY, Salleh EI, Sharif MKA (2014) Thermal performance on unglazed photovoltaic thermal polymer collector. In: Advanced Materials Research. Trans Tech Publ, pp 238–242

  • Nabil T, Khairat Dawood MM (2020) Productivity enhancement of single-slope solar still using oxy-hydrogen gas as fuel: an experimental approach. Int J Energy Res

  • Naik PS, Palatel A (2014) Energy and exergy analysis of a plane reflector integrated photovoltaic-thermal water heating system. Int Scholarly Res Notices 2014

  • Nia M, Chegaar M, Benatallah M, Aillerie M (2013) Contribution to the quantification of solar radiation in Algeria. Energy Procedia 36:730–737

    Article  Google Scholar 

  • Omara Z, Kabeel A, Younes M (2013) Enhancing the stepped solar still performance using internal reflectors. Desalination 314:67–72

    Article  CAS  Google Scholar 

  • Omara Z, Kabeel A, Younes M (2014) Enhancing the stepped solar still performance using internal and external reflectors. Energy Convers Manag 78:876–881

    Article  Google Scholar 

  • Omara Z, Kabeel A, Abdullah A, Essa F (2016) Experimental investigation of corrugated absorber solar still with wick and reflectors. Desalination 381:111–116

    Article  CAS  Google Scholar 

  • Omara Z, Kabeel A, Abdullah A (2017) A review of solar still performance with reflectors. Renew Sust Energ Rev 68:638–649

    Article  Google Scholar 

  • Parsa SM, Javadi D, Rahbar A, Majidniya M, Aberoumand S, Amidpour Y, Amidpour M (2019) Experimental assessment on passive solar distillation system on Mount Tochal at the height of 3964 m: study at high altitude. Desalination 466:77–88

    Article  CAS  Google Scholar 

  • Parsa SM, Javadi D, Rahbar A, Majidniya M, Salimi M, Amidpour Y, Amidpour M (2020a) Experimental investigation at a summit above 13,000 ft on active solar still water purification powered by photovoltaic: a comparative study. Desalination 476:114146

    Article  CAS  Google Scholar 

  • Parsa SM, Rahbar A, Javadi D, Koleini M, Afrand M, Amidpour M (2020b) Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000m: altitude concept. J Clean Prod 121243

  • Parsa SM, Rahbar A, Koleini M, Aberoumand S, Afrand M, Amidpour M (2020c) A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination 480:114354

    Article  CAS  Google Scholar 

  • Parsa SM, Rahbar A, Koleini M, Javadi YD, Afrand M, Rostami S, Amidpour M (2020d) First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS). Desalination 491:114592

    Article  CAS  Google Scholar 

  • Ramalingam VK, Karthick A, Jeyalekshmi MPV, Decruz AMMAJ, Manokar AM, Sathyamurthy R Enhancing the fresh water produced from inclined cover stepped absorber solar still using wick and energy storage materials. Environ Sci Pollut Res:1–17

  • Shanmugan S, Rajamohan P, Mutharasu D (2008) Performance study on an acrylic mirror boosted solar distillation unit utilizing seawater. Desalination 230(1-3):281–287

    Article  CAS  Google Scholar 

  • Tabet I, Touafek K, Bellel N, Khelifa A, Adouane M (2014) Performances improvement of photovoltaic thermal air collector by planer reflector. Rev Des Energies Renouvelables 1:219–225

    Google Scholar 

  • Tanaka H (2009) Tilted wick solar still with external flat plate reflector: optimum inclination of still and reflector. Desalination 249(1):411–415

    Article  CAS  Google Scholar 

  • Tanaka H, Nakatake Y (2005) A simple and highly productive solar still: a vertical multiple-effect diffusion-type solar still coupled with a flat-plate mirror. Desalination 173(3):287–300

    Article  CAS  Google Scholar 

  • Tanaka H, Nakatake Y (2007) Improvement of the tilted wick solar still by using a flat plate reflector. Desalination 216(1-3):139–146

    Article  CAS  Google Scholar 

  • Tanaka H, Nakatake Y (2009) Increase in distillate productivity by inclining the flat plate external reflector of a tilted-wick solar still in winter. Sol Energy 83(6):785–789

    Article  Google Scholar 

  • Thalib MM, Manokar AM, Essa FA, Vasimalai N, Sathyamurthy R, Garcia Marquez FP (2020) Comparative study of tubular solar stills with phase change material and nano-enhanced phase change material. Energies 13(15):3989

    Article  CAS  Google Scholar 

  • Zhuang W (2016) Eco-environmental impact of inter-basin water transfer projects: a review. Environ Sci Pollut Res 23(13):12867–12879

    Article  Google Scholar 

  • Zouari M, Souguir D, Bloem E, Schnug E, Hanchi B, Hachicha M (2019) Saline soil reclamation by agroforestry species under Kalaât Landelous conditions and irrigation with treated wastewater in Tunisia. Environ Sci Pollut Res 26(28):28829–28841

    Article  CAS  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, resources, formal analysis and investigation were carried out by Mohammed El Hadi Attia, Athikesavan Muthu Manokar, Fausto Pedro Garcia Marquez, Zied Driss and Ravishankar Sathyamurthy. Writing–original draft preparation, review and editing, and supervision were carried out by V. S.Chandrika.

Corresponding author

Correspondence to Fausto Pedro Garcia Marquez.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Error analysis

The variable parameters are measured using thermocouples, pyranometer and graduated beaker. All the errors are recorded in Table 2.

Table 2 Standard uncertainties

Appendix 2

  1. 1.

    The EHTC from Ts.w to Tc.c (Manokar et al. 2018b):

    $$ {h}_{e,w-g}=16.273\times {10}^{-3}x{h}_{c,w-g}\left[\frac{P_w-{P}_{cc}}{\mathrm{T}\mathrm{b}.\mathrm{w}-{\mathrm{T}}_{\mathrm{c}.\mathrm{c}}}\right] $$
  2. 2.

    Convective heat transfer coefficient from Ts.w to Tc.c (Manokar et al. 2018b):

$$ {h}_{c,w-g}=0.884{\left[\left({T}_w-{T}_g\right)+\frac{\left({T}_w+273.15\right)\left({p}_w-{p}_g\right)}{\left(268900-{p}_w\right)}\right]}^{1/3} $$
  1. 3.

    Partial vapour pressure at the Ts.w (Manokar et al. 2018b):

    $$ {P}_w=\mathit{\exp}\left(25.317-\left(\frac{5144}{273+\mathrm{Tb}.\mathrm{w}}\right)\right) $$
  2. 4.

    Partial vapour pressure at the Tc.c (Manokar et al. 2018b):

    $$ {P}_{gi}=\mathit{\exp}\left(25.317-\left(\frac{5144}{273+{\mathrm{T}}_{\mathrm{c}.\mathrm{c}}}\right)\right) $$
  3. 5.

    The energy efficiency of the CSS-BPW, CSS-RAFW and CSS-RGMW (Manokar et al. 2018b):

    $$ {\eta}_{passive}=\frac{\sum {\dot{m}}_{ew}L}{\sum I(t){A}_s\times 3600}\times 100 $$
  4. 6.

    The exergy efficiency of the CSS-BPW, CSS-RAFW and CSS-RGMW (Manokar et al. 2018b):

$$ {\eta}_{overall, exe}=\frac{\sum {Ex}_{\mathrm{output}}}{\sum {Ex}_{\mathrm{input}}} $$
  1. 7.

    The hourly exergy output of the CSS-BPW, CSS-RAFW and CSS-RGMW (Manokar et al. 2018b):

$$ {Ex}_{\mathrm{output}}=\frac{m_{ew}{L}_{fg}}{3600}\times \left[1-\frac{T_a}{T_w}\right] $$
  1. 8.

    The hourly exergy input of the CSS-BPW, CSS-RAFW and CSS-RGMW (Manokar et al. 2018b):

$$ {Ex}_{\mathrm{input}}={A}_w{I}^{\hbox{'}}(t)\times \left[1-\frac{4}{3}\left(\frac{T_a}{T_s}\right)+\frac{1}{3}{\left(\frac{T_a}{T_s}\right)}^4\right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrika, V.S., Attia, M.E.H., Manokar, A.M. et al. Performance enhancements of conventional solar still using reflective aluminium foil sheet and reflective glass mirrors: energy and exergy analysis. Environ Sci Pollut Res 28, 32508–32516 (2021). https://doi.org/10.1007/s11356-021-13087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13087-2

Keywords

Navigation