Skip to main content

Advertisement

Log in

ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Approximately 6% of the world’s total land area and 20% of the irrigated land are affected by salt stress. Egypt is one such country affected by salt-stress problems. This paper focuses on the role of isolated bacteria, such as Bacillus subtilis and Pseudomonas fluorescens, in alleviating the harmful effects of salt stress. The results show that the irrigation of plants with different concentrations of saline water (0, 75, and 150 mM NaCl) leads to significantly decreased growth criteria, photosynthetic pigments (i.e., chl a, chl b, and carotenoids), and membrane stability index (MSI) values. Moreover, malondialdehyde (MDA), glutathione content, endogenous proline, the antioxidant defense system, 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase (ACS), ACC oxidase (ACO), and Na+ content were significantly increased under NaCl-stress exposure. On the contrary, treatment with endophytic bacteria significantly increased the resistance of pea plants to salt stress by increasing the enzymatic antioxidant defenses (i.e., superoxide dismutase, catalase, peroxidase, and glutathione reductase), non-enzymatic antioxidant defenses (i.e., glutathione), osmolyte substances such as proline, and antioxidant enzyme gene expression. As a result, endophytic bacteria’s use was significantly higher compared to control values for indole-3-acetic acid (IAA), gibberellic acid GA3, MSI, and photosynthetic pigments. The use of endophytic bacteria significantly decreased Na+ accumulation while, at the same time, promoting K+ uptake. In conclusion, the induction of endophytic bacterium-induced salt tolerance in pea plants depends primarily on the effect of endophytic bacteria on osmoregulation, the antioxidant capacity, and ion uptake adjustment by limiting the uptake of Na+ and, alternatively, increasing the accumulation of K+ in plant tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abd_Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FO, Malik JA, Alharbi RI, Egamberdieva D, (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13:37–44

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2021) Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J Soil Sci Plant Nutr 21:389–403

    Article  CAS  Google Scholar 

  • Aebi H (1983) Catalase. Methods of Enzymatic Analysis, 3rd edn. Verlag Chemie, Weinheim, pp 273–286

    Google Scholar 

  • Agami RA, Medani RA, Abd El-Mola IA, Taha RS (2016) Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. Int J Environ Agri Res 2:78

    Google Scholar 

  • Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A (2019) Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem 139:1–10

    Article  CAS  Google Scholar 

  • AOAC (1990) Official methods of analysis of the association of official analytical chemistis, 15th edn. Association of Official Analytical Chemistis Arlington, Virginia

    Google Scholar 

  • Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438

    Article  CAS  Google Scholar 

  • Bahadur A, Singh UP, Sarma BK, Singh DP, Singh KP, Singh A (2007) Foliar application of plant growth-promoting rhizobacteria increases antifungal compounds in pea (Pisum sativum) against Erysiphe pisi. Mycobiology 35:129–134

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bharti N, Barnawal D (2019) Chapter Five - Amelioration of Salinity Stress by PGPR: ACC Deaminase and ROS Scavenging Enzymes Activity. In: Singh A, Kumar A, Singh P (eds) PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, Cambridge, pp 85–106

    Chapter  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    Article  CAS  Google Scholar 

  • Brilli F, Pollastri S, Raio A, Baraldi R, Neri L, Bartolini P, Podda A, Loreto F, Maserti BE, Balestrini R (2019) Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. J Plant Physiol 232:82–93

  • Cao C, Li X, Yu L, Shi X, Chen L, Yu B (2018) Foliar 2, 3-dihydroporphyrin iron (III) spray confers ameliorative antioxidation, ion redistribution and seed traits of salt-stressed soybean plants. J Soil Sci Plant Nutr 18:1048–1064

  • Cheesbrough M (2006) District laboratory practice in tropical countries, 2nd edn. Cambridge University Press, New York

  • Chen C, Tao C, Peng H, Ding Y (2007) Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculataL.) ssp. sesquipedalis Verdc. J Hered 98:655–665

  • Cherif-Silini H, Silini A, Yahiaoui B, Ouzari I, Boudabous A (2016) Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann Microbiol 66:1087–1097

  • Damodaran T, Rai R, Jha S, Kannan R, Pandey B, Sah V, Mishra V, Sharma D (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584

  • Dihazi A, Jaiti F, Zouine J, Hasni ME, Hadrami IE (2003) Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum. Phytopathol Mediterr 42:9–16

  • El-Beltagi HS, Mohamed HI (2013) Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41:44

  • El-Beltagi H, Sofy MR, Aldaej MI, Mohamed HI (2020) Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12:4732

  • El-Mashad AA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249:625–635

    Article  CAS  Google Scholar 

  • El-Nahrawy S, Elhawat N, Alshaal T (2019) Biochemical traits of Bacillus subtilis MF497446: Its implications on the development of cowpea under cadmium stress and ensuring food safety. Ecotoxicol Environ Saf 180:384–395

    Article  CAS  Google Scholar 

  • El-Ramady H, Alshaal T, Elhawat N, Ghazi A, Elsakhawy T, Omara A, El-Nahrawy S, Elmahrouk M, Abdalla N, Domokos-Szabolcsy É, Schnug E (2018) Plant Nutrients and Their Roles Under Saline Soil Conditions. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant Nutrients and Abiotic Stress Tolerance. Singapore, Springer Singapore, pp 297–324

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

  • FAOSTAT (2020) Food and Agriculture Organization of the United Nations Statistics Division. Available online:. http://faostat.fao.org/site/567/DesktopDefault.aspx (accessed on 23 February 2020)

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

  • Ghonaim M, Mohamed HI, Omran AAA (2021) Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68:227–242

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Glick B, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Glick B, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker P et al (eds) New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research. Springer, Netherlands, Dordrecht, pp 329–339

    Chapter  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical Procedures for Agricultural Research. John Wiley & Sons Inc., Singapore

    Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2- vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  • Gupta K, Dubey N, Singh S, Kheni J, Gupta S, Varshney A (2021) Plant Growth-Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement. In: Yadav A, Singh J, Singh C, Yadav N (eds) Current Trends in Microbial Biotechnology for Sustainable Agriculture. Springer Singapore, Singapore, pp 203–226

    Chapter  Google Scholar 

  • Habib SH, Kausar H, Saud H (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:1–10

    Article  CAS  Google Scholar 

  • Haitao Y, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297:139–145

    Article  CAS  Google Scholar 

  • Hafez Y, Bacsó R, Király Z, Künstler A, Király L (2012) Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102:848–856

    Article  CAS  Google Scholar 

  • Halket G, Dinsdale AE, Logan NA (2010) Evaluation of the VITEK2 BCL card for identification of Bacillus species and other aerobic endosporeformers. Lett Appl Microbiol 50:120–126

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin J-H, Ahmad B, Shin D-H, Lee I-J (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. agricultural and. Food Chem 58:7226–7232

    Article  CAS  Google Scholar 

  • Han Q, Lã X, Bai J, Qiao Y, Parã W, Wang S, Zhang J, Wu Y, Pang X, Xu W, Wang Z (2014) Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front Plant Sci 5:1928

    Article  Google Scholar 

  • Hara M (2010) The multifunctionality of dehydrins: an overview. Plant Signal Behav 5:503–508

    Article  CAS  Google Scholar 

  • Hegazi AM, El-Shraiy AM, Ghoname AA (2017) Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanzen 69:91–102

    Article  CAS  Google Scholar 

  • Hernández J, Almansa M (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  Google Scholar 

  • Huang B, Lv C, Zhuang P, Zhang H, Fan L (2011) Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L. Plant Biol 13:925–931

    Article  CAS  Google Scholar 

  • Ilangumaran G, Smith D (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    Article  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Irigoyen J, Einerich D, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi. 144, pp 326–338

    Google Scholar 

  • Janahiraman V, Anandham R, Kwon W, Sundaram S, Karthik PV, Krishnamoorthy R, Kim K, Samaddar S, Sa T (2016) Control of wilt and rot pathogens of tomato by antagonistic pink pigmented facultative methylotrophic Delftia lacustris and Bacillus spp. Front Plant Sci 7:439

    Article  Google Scholar 

  • Jiang M, Zhang J (2002) Involvement of plasma-membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215:1022–1030

    Article  CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  Google Scholar 

  • Khan MI, Khan NA (2017) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore

    Google Scholar 

  • Knegt E, Bruinsma J (1973) A rapid, sensitive and accurate determination of indolyl-3-acetic acid. Phytochemistry 12:753–756

    Article  CAS  Google Scholar 

  • Kumar AN, Fatima T, Mishra J, Mishra I, Verma S, Verma R, Verma M, Bhattacharya A, Verma P, Mishra P, Bharti C (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res 26:69–82. https://doi.org/10.1016/j.jare.2020.07.003

    Article  CAS  Google Scholar 

  • Latif HH, Mohamed HI (2016) Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. S Afr J Bot 106:221–231

  • Litalien A, Zeeb B (2020) Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci Total Environ 698:134235

  • Liu X, Zhang H (2015) The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci 6:774

    Article  Google Scholar 

  • Liu Y, Yu L, Qu Y, Chen J, Liu X, Hong H, Liu Z, Chang R, Gilliham M, Qiu L, Guan R (2016) GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl- exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci 7:1485

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Lu ZX, He JF, Zhang YC, Bing DJ (2019) Composition, physiochemicals properties of pea protein and its application in functional food. Crit Rev Food Sci Nutr 20:1–13

    Google Scholar 

  • Malerba M, Crosti P, Armocida D, Bianchetti R (1995) Activation of ethylene production in Acer pseudoplatanus L. cultured cells by fusicoccin. J Plant Physiol 145:93–100

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50:263–272

    Article  CAS  Google Scholar 

  • Mohamed HI, Akladious S, El-Beltagi H (2018) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ Bull 27:7054–7076

    CAS  Google Scholar 

  • Munns R, James RA, Láuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  Google Scholar 

  • Oehrle NW, Karr DB, Kremer RJ, Emerich DW (2000) Enhanced attachment of Bradyrhizobium japonicum to soybean through reduced root colonization of internally seedborne microorganisms. Can J Microbiol 46:600–606

    Article  CAS  Google Scholar 

  • Okan YS, Albercht L, Burris RH (1977) Methods of growing Spirillum lipoferum and for counting the pure culture in association and with plant. Appl Environ Microbiol 33:85–88

    Article  Google Scholar 

  • Page AI, Miller RH, Keeney DR (1982) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, second edn. Amer. Soc. Agron, Madison

    Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Phosphate mobilization in soils as related to life processes of some microorganisms. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Rajendran L, Saravanakumar D, Raguchander T, Samiyappan R (2006) Endophytic bacterial induction of defence enzymes against bacterial blight of cotton. Phytopathol Mediterr 45:203–214

    CAS  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    Article  CAS  Google Scholar 

  • Rouhier N, Jacquot J (2002) Plant peroxiredoxins: Alternative hydroperoxide scavenging enzymes. Photosynth Res 74:259–268

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 3:584–593

    Google Scholar 

  • Sakhabutdinova A, Fatkhutdinova D, Bezrukova M, Shakirova F (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Plant Physiol 21:314–319

    Google Scholar 

  • Satoh S, Oyamada N, Yoshioka T, Midoh N (1997) 1,1-Dimethyl-4-(phenylsulfonyl) semicarbazide (DPSS) does not inhibit the in vitro activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase obtained from senescing carnation (Dianthus caryophyllus L.) petals. Plant Growth Regul 23:191–193

  • Shahzad SM, Khalid A, Arshad M, Kalil R (2010) Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil Environ 29:38–46

    CAS  Google Scholar 

  • Shilev S (2020) Plant-Growth-Promoting Bacteria Mitigating Soil Salinity Stress in Plants. Appl Sci 10:7326

    Article  CAS  Google Scholar 

  • Sibole JV, Montero E, Cabot C, Poschenrieder C, Barcelo J (1998) Role of sodium in the ABA-mediated long-term growth response of bean to salt stress. Physiol Plant 104:299–305

    Article  CAS  Google Scholar 

  • Sieuwerts S, de Bok AMF, Mols E, De Vos MW, van HJ V (2008) A simple and fast method for determining colony forming units. Lett Appl Microbiol 47:275–278

    Article  CAS  Google Scholar 

  • Sofy AR, Hmed AA, Alnaggar AM, Dawoud RA, Elshaarawy RFM, Sofy MR (2020) Mitigating effects of Bean yellow mosaic virus infection in faba bean using new carboxymethyl chitosan-titania nanobiocomposites. Int J Biol Macromol 163:1261–1275

    Article  CAS  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AM, Soliman A, El-Dougdoug N (2021a) Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules 26:1337

    Article  CAS  Google Scholar 

  • Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey EE, Mohamed HI, El-Dougdoug NK (2021b) Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10:459

  • Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Romanian Biotechnol Lett 16:5919–5926

    Google Scholar 

  • Sun P, Tian Q, Zhao M, Dai X, Huang J, Li L, Zhang W (2007) Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Plant Cell Physiol 48:1229–1235

    Article  CAS  Google Scholar 

  • Ullah I, Khan A, Park G, Lim J, Waqas M, Lee I, Shin J (2013) Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci Biotechnol 22:25–31

    Article  CAS  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vernon L, Seely G (1966) The Chlorophylls. Academic Press, New York

    Google Scholar 

  • Wächter R, Fischer K, Gäbler R, Kühnemann F, Urban W, Bögemann GM, Voesenek LACJ, Blom CWPM, Ullrich CI (2002) Ethylene production and ACC-accumulation in Agrobacterium tumefaciens induced plant tumours and their impact on tumour and host stem structure and function. Plant Cell Environ 22:1263–1273

  • Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z, Wang B, Sun L (2014) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

  • Younesi O, Moradi A (2014) Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agriculture (Pol'nohospodárstvo) 60:10–21

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:98–169

  • Zhao L, Xu Y, Lai X (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278

Download references

Availability of data and materials

Not applicable

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Mahmoud Sofy, Akram A. Aboseidah, and Hoda R. Ahmed: conceptualization, methodology, statistical analysis, data analysis, and writing original data preparation. Mahmoud Sofy, Akram A. Aboseidah, Samia A. Heneidak, and Hoda R. Ahmed: supervision, reviewing, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmoud R. Sofy.

Ethics declarations

Ethical approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

Not applicable

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofy, M.R., Aboseidah, A.A., Heneidak, S.A. et al. ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res 28, 40971–40991 (2021). https://doi.org/10.1007/s11356-021-13585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13585-3

Keywords

Navigation