Skip to main content
Log in

Review on the progress of building-applied/integrated photovoltaic system

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Integration of photovoltaic (PV) technologies with building envelopes started in the early 1990 to meet the building energy demand and shave the peak electrical load. The PV technologies can be either attached or integrated with the envelopes termed as building-attached (BA)/building-integrated (BI) PV system. The BAPV/BIPV system applications are categorized under the building envelope roof and facades as PV-roof, PV-skin facade, PV-Trombe wall, PV claddings, and louvers. This review covers various factors that affect the design and performance of the BAPV/BIPV system applications. The factors identified are air gap, ventilation rate, a tilt angle of PV shading devices, adjacent shading, semitransparent PV (STPV) glazing design, cell coverage ratio (CCR), transmittance, window to wall ratio (WWR), and glazing orientation. Furthermore, the results of the possible factors are compared to building locations. This review article will be beneficial for researchers in designing the BAPV/BIPV system and provides future research possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Aaditya G, Mani M (2018) BIPV: “A real-time building performance study for a roof-integrated facility.” Int J Sustain Energy 37:249–267

  • Aaditya G, Pillai R, Mani M (2013) An insight into real-time performance assessment of a building integrated photovoltaic (BIPV) installation in Ban- galore (India). Energy Sustain Dev 17(5):431–437. https://doi.org/10.1016/j.esd.2013.04.007

    Article  Google Scholar 

  • Agathokleous RA, Kalogirou SA (2016) Double skin facades (DSF) and building integrated photovoltaics (BIPV): a review of configurations and heat transfer characteristics. Renew Energy 89:743–756. https://doi.org/10.1016/j.renene.2015.12.043

    Article  Google Scholar 

  • Agathokleous R, Kalogirou SA (2016b) Thermal analysis of a building integrated photovoltaic (BIPV) system.29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 19–23 June https://ktisis.cut.ac.cy/handle/10488/18264

  • Agathokleous R, Kalogirou S (2017) Simulation-Based Investigation of the Air Velocity in a Naturally Ventilated BIPV System. In: Visa I., Duta A. (eds) Nearly Zero Energy Communities. CSE 2017. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-63215-5_15

  • Agathokleous RA, Kalogirou SA, Part II (2018) Thermal analysis of naturally ventilated BIPV system: modeling and simulation”. Sol Energy 169:682–691

  • Agrawal B, Tiwari GN (2010) Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Appl Energy 87(2):417–426

    Article  Google Scholar 

  • Ahmed OK, Hamada KI, Salih AM (2019a) Enhancement of the performance of photovoltaic/Trombe wall system using the porous medium: experimental and theoretical study. Energy. 171:14–26

    Article  Google Scholar 

  • Ahmed OK, Hamada KI, Salih AM (2019b) Performance analysis of PV/Trombe with water and air heating system: an experimental and theoretical study. Energy Sou., Part A: Recov., Utiliz., and Envir. Effects 1-21.10.1080/15567036.2019.1650139

  • Ahmed OK, Hamada KI, Salih AM, Daoud RW (2020) A state of the art review of PV-Trombe wall system: design and applications. Environ Prog Sustain Energy 39(3):e13370

    Article  CAS  Google Scholar 

  • Akata MAE, Njomo D, Mempouo B (2015) The effect of building integrated photovoltaic system (BIPVS) on indoor air temperatures and humidity (Iath) in the tropical region of Cameroon”. Future Cities Environ. 1:1–1 https://doi.org/10.1186/s40984-015-0002-y

  • Akata AMEA, Njomo D, Agrawal B (2017) Assessment of building integrated photovoltaic (BIPV) for sustainable energy performance in tropical regions of Cameroon. Renew Sust Energ Rev 80:1138–1152. https://doi.org/10.1016/j.rser.2017.05.155

    Article  Google Scholar 

  • Athienitis AK, Bambara J, O’Neill B, Faille J (2011) A prototype photo- voltaic/thermal system integrated with transpired collector. Sol Energy 85(1):139–153. https://doi.org/10.1016/j.solener.2010.10.008

    Article  CAS  Google Scholar 

  • Ban-Weiss G, Wray C, Delp W, Ly P, Akbari H, Levinson R (2013) Electricity production and cooling energy savings from installation of a building- integrated photovoltaic roof on an office building. Energy and Buildings 56:210–220. https://doi.org/10.1016/j.enbuild.2012.06.032

    Article  Google Scholar 

  • Barman S, Chowdhury A, Mathur S, Mathur J (2018) Assessment of the efficiency of window integrated CdTebased semi-transparent photovoltaic module. Sustain. Cities Soc 37, 250-262. https://doi.org/10.1016/j.scs.2017.09.036

  • Biyik E, Araz M, Hepbasli A, Shahrestani M, Yao R, Shao L, Essah E, Oliveira AC, del Caño T, Rico E, Lechón JL, Andrade L, Mendes A, Atlı YB (2017) A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J 20(3):833–858. https://doi.org/10.1016/j.jestch.2017.01.009

    Article  Google Scholar 

  • Cannavale A, Hörantner M, Eperon GE, Snaith HJ, Fiorito F, Ayr U, Martel- lotta F (2017a) Building integration of semitransparent perovskite-based solar cells: energy performance and visual comfort assessment. Applied En- ergy 194:94–107. https://doi.org/10.1016/j.apenergy.2017.03.011

    Article  Google Scholar 

  • Cannavale A, Ierardi L, Hörantner M, Eperon GE, Snaith HJ, Ayr U, Martel- lotta F (2017b) Improving energy and visual performance in offices using building integrated perovskite-based solar cells: a case study in Southern Italy. Applied Energy 205:834–846. https://doi.org/10.1016/j.apenergy.2017.08.112

    Article  Google Scholar 

  • Caruso M, Miceli R, Romano P, Schettino G, Viola F (2018) Technical and economical performances of photovoltaic generation façades. Int J Smart Grid-ijSmartGrid 2:87–98

    Google Scholar 

  • Chae YT, Kim J, Park H, Shin B (2014) Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells. Appl Energy 129:217–227

    Article  CAS  Google Scholar 

  • Chan ALS (2019) Effect of adjacent shading on the energy and environmental performance of photovoltaic glazing system in building application. Energy 187:115939–115939

    Article  Google Scholar 

  • Chialastri A, Isaacson M (2017) Performance and optimization of a BIPV/T solar air collector for building fenestration applications. Energy and Buildings 150:200–210

    Article  Google Scholar 

  • Chow TT, Pei G, Chan LS, Lin Z, Fong KF (2009) A comparative study of PV glazing performance in warm climate. Indoor and Built Environment 18(1):32–40. https://doi.org/10.1177/1420326x08100323

    Article  Google Scholar 

  • Chung MH, Park BR, Choi EJ, Choi YJ, Lee C, Hong J, Moon WJ (2020) Performance level criteria for semi-transparent photovoltaic windows based on dye-sensitized solar cells. Sol Energy Mater Sol Cells 217:110683–110683

    Article  CAS  Google Scholar 

  • Clarke JA, Hand JW, Johnstone CM, Kelly N, Strachan PA (1996) Photovoltaic-integrated building facades. Renew Energy 8(1-4):475–479. https://doi.org/10.1016/0960-1481(96)88902-6

    Article  Google Scholar 

  • Corbin CD, Zhai ZJ (2010) Experimental and numerical investigation on thermal and electrical performance of a building integrated photovoltaic–thermal collector system. Energy and Buildings 42(1):76–82. https://doi.org/10.1016/j.enbuild.2009.07.013

    Article  Google Scholar 

  • Cornaro C, Bartocci S, Musella D, Strati C, Lanuti A, Mastroianni S, Di Carlo, A. (2015) Comparative analysis of the outdoor performance of a dye solar cell mini-panel for building integrated photovoltaics applications. Prog Photovolt Res Appl 23:215–225

  • Cronemberger J, Corpas MA, Cerón I, Caamaño-Martín E, Sánchez SV (2014) BIPV technology application: highlighting advances, tendencies and solutions through Solar Decathlon Europe houses. Energy and Buildings 83:44–56

    Article  Google Scholar 

  • D’Orazio M, Perna CD, Giuseppe ED (2014) Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate. Renew Energy 68:378–396. https://doi.org/10.1016/j.renene.2014.02.009

    Article  Google Scholar 

  • Davidsson H, Perers B, Karlsson B (2012) System analysis of a multifunctional PV/T hybrid solar window. Sol Energy 86(3):903–910. https://doi.org/10.1016/j.solener.2011.12.020

    Article  Google Scholar 

  • Debbarma M, Sudhakar K, Baredar P (2017a) Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies, 3(3), 263 271. https://doi.org/10.1016/j.reffit.2016.11.013

  • Debbarma M, Sudhakar K, Baredar P (2017b) Thermal modeling, exergy analysis, performance of BIPV and BIPVT: a review. Renew Sust Energ Rev 73:1276–1288

    Article  Google Scholar 

  • Defaix PR, van Sark WGJHM, Worrell E, de Visser E (2012) Technical poten- tial for photovoltaics on buildings in the EU-27. Sol Energy 86(9):2644–2653. https://doi.org/10.1016/j.solener.2012.06.007

    Article  Google Scholar 

  • Dehra H (2017) An investigation on energy performance assessment of a photovoltaic solar wall under buoyancy-induced and fan-assisted ventilation system. Appl Energy 191:5574. https://doi.org/10.1016/j.apenergy.2017.01.038

    Article  CAS  Google Scholar 

  • Didoné EL, Wagner A (2013) Semi-transparent PV windows: a study for office buildings in Brazil. Energy Build 67:136–142. https://doi.org/10.1016/j.enbuild.2013.08.002

    Article  Google Scholar 

  • Do SL, Shin M, Baltazar JC, Kim J (2017) Energy benefits from semi- transparent BIPV window and daylight-dimming systems for IECC code- compliance residential buildings in hot and humid climates. Sol Energy 155:291–303. https://doi.org/10.1016/j.solener.2017.06.039

    Article  Google Scholar 

  • Dominguez A, Kleissl J, Luvall JC (2011) Effects of solar photovoltaic panels on roof heat transfer. Sol Energy 85(9):2244–2255. https://doi.org/10.1016/j.solener.2011.06.010

    Article  Google Scholar 

  • Elsayed MS (2016) Optimizing thermal performance of building-integrated photovoltaics for upgrading informal urbanization. Energy Build 116:232–248

    Article  Google Scholar 

  • Gan G (2009) Effect of air gap on the performance of building-integrated photovoltaics. Energy 34:913–921

    Article  CAS  Google Scholar 

  • Ghosh A (2020) Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive Review. J Clean Prod:123343.https://doi.org/10.1016/j.jclepro.2020.12334

  • Ghosh A, Sarmah N, Sundaram S, Mallick TK (2019) Numerical studies of thermal comfort for semi-transparent building integrated photovoltaic (BIPV)-vacuum glazing system. Sol Energy 190:608–616. https://doi.org/10.1016/j.solener.2019.08.049

    Article  Google Scholar 

  • Ghosh, A., Mesloub, A., Touahmia, M., & Ajmi, M. (2021). Visual comfort analysis of semi transparent perovskite based building integrated photovoltaic window for hot desert climate (Riyadh, Saudi Arabia). Energies, 14(4), 1043. https://doi.org/10.3390/en14041043

  • Global and Outlook 2018 https://www.iea.org/reports/world-energy-outlook-2018 Accessed on 01 Jul 2021

  • Gok A, Ozkalay E, Friesen G, Frontini F (2020) The influence of operating temperature on the performance of BIPV modules. IEEE Journal of Photovoltaics 10(5):1371–1378. https://doi.org/10.1109/jphotov.2020.3001181

    Article  Google Scholar 

  • Gonçalves JE, van Hooff T, Saelens D (2020) Understanding the behaviour of naturally-ventilated BIPV modules: a sensitivity analysis. Renew Energy 161:133–148. https://doi.org/10.1016/j.renene.2020.06.086

    Article  Google Scholar 

  • Gonçalves JE, van Hooff T, Saelens D (2021) Simulating building integrated photovoltaic facades: comparison to experimental data and evaluation of modelling complexity. Appl Energy 281:116032–116032. https://doi.org/10.1016/j.apenergy.2020.116032

    Article  Google Scholar 

  • Goossens D, Goverde H, Catthoor F (2018) Effect of wind on temperature patterns, electrical characteristics, and performance of building-integrated and building-applied inclined photovoltaic modules. Sol Energy 170:64–75. https://doi.org/10.1016/j.solener.2018.05.043

    Article  Google Scholar 

  • Hachem C, Elsayed M (2016) Patterns of façade system design for enhanced energy performance of multistory buildings. Energy and Buildings 130:366–377. https://doi.org/10.1016/j.enbuild.2016.08.051

    Article  Google Scholar 

  • Hagemann I (1996) Architectural considerations for building-integrated photovoltaics. Prog Photovolt Res Appl 4(4):247–258.

  • Irshad K, Habib K, Thirumalaiswamy N (2013) Implementation of photo voltaic Trombe wall system for developing non-air conditioned buildings. Proc - 2013 IEEE Conf Sustain Util Dev Eng Technol IEEE CSUDET. 2013:68-73

  • Irshad K, Habib K, Thirumalaiswamy N (2015) Performance evaluation of PV-Trombe wall for sustainable building development. Procedia CIRP 26:624–629. https://doi.org/10.1016/j.procir.2014.07.116

    Article  Google Scholar 

  • Islam N, Irshad K, Zahir MH, Islam S (2021) Numerical and experimental study on the performance of a photovoltaic Trombe wall system with Venetian blinds. Energy 218:119542

    Article  Google Scholar 

  • Jayathissa P, Luzzatto M, Schmidli J, Hofer J, Nagy Z, Schlueter A (2017) Optimising building net energy demand with dynamic BIPV shading. Appl Energy 202:726–735. https://doi.org/10.1016/j.apenergy.2017.05.083

    Article  Google Scholar 

  • Jelle BP, Breivik C, Røkenes HD (2012) Building integrated photovoltaic products: a state-of-the-art review and future research opportunities. Sol Energy Mater Sol Cells 100:69–96. https://doi.org/10.1016/j.solmat.2011.12.016

    Article  CAS  Google Scholar 

  • Ji J, Han J, tai Chow T, Yi H, Lu J, He W, Sun W (2006) Effect of fluid flow and packing factor on energy performance of a wall-mounted hybrid photovoltaic/water-heating collector system. Energy and Buildings 38(12):1380–1387. https://doi.org/10.1016/j.enbuild.2006.02.010

    Article  Google Scholar 

  • Ji J, Yi H, He W, Pei G (2007) “PV-Trombe wall design for buildings in composite climates.” 431-437

  • Jiang B, Ji J, Yi H (2008) The influence of PV coverage ratio on thermal and electrical performance of photovoltaic-Trombe wall. Renew Energy 33(11):2491–2498

    Article  Google Scholar 

  • Jiang B, Jagathokleous RA, Kalogirou SA (2018) Part I: “Thermal analysis of naturally ventilated BIPV system: experimental investigation and convec- tive heat transfer coefficients estimation. Sol Energy 169:673–681

  • Jie J, Hua Y, Gang P, Bin J, Wei H (2007) Study of PV-Trombe wall assisted with DC fan. Build Environ 42(10):3529–3539. https://doi.org/10.1016/j.buildenv.2006.10.038

    Article  Google Scholar 

  • Kapsis K, Athienitis AK (2015) A study of the potential benefits of semi- transparent photovoltaics in commercial buildings. Sol Energy 115:120–132. https://doi.org/10.1016/j.solener.2015.02.016

    Article  Google Scholar 

  • Karthick A, Murugavel KK, Kalaivani L (2018a) Performance analysis of semi-transparent photovoltaic module for skylights. Energy 162:798–812. https://doi.org/10.1016/j.energy.2018.08.043

    Article  Google Scholar 

  • Karthick A, Murugavel KK, Kalaivani L, Babu US (2018b) Performance study of building integrated photovoltaic modules. Advances in Building Energy Research 12(2):178194. https://doi.org/10.1080/17512549.2016.1275982

    Article  Google Scholar 

  • Kim JH, Han SH (2020) Energy generation performance of window-type dye-sensitized solar cells by color and transmittance. Sustainability 12(21):8961

    Article  CAS  Google Scholar 

  • Kim JH, Kim J (2012) A simulation study of air-type building-integrated photovoltaic-thermal system. Energy Procedia 30:1016–1024

    Article  Google Scholar 

  • Konttinen P, Carlsson T, Lund P, Lehtinen T (2006) Estimating thermal stress in BIPV modules. Int J Energy Res 30(15):1264–1277. https://doi.org/10.1002/er.1217

    Article  Google Scholar 

  • Kotak Y, Gago EJ, Mohanty P, Muneer T (2014) Installation of roof-top solar PV modules and their impact on building cooling load. Build Serv Eng Res Technol 35(6):613–633. https://doi.org/10.1177/0143624414527098

    Article  Google Scholar 

  • Koyunbaba BK, Yilmaz Z, Ulgen K (2013) An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system. Energy and Buildings 67:680–688. https://doi.org/10.1016/j.enbuild.2011.06.031

    Article  Google Scholar 

  • Krauter S, Salhi MJ, Schroer S, Hanitsch R (2001) New facade system consisting of combined photovoltaic and solar thermal generators with building insulation. Seventh IBPSA

  • Kuhn, T. E., Erban, C., Heinrich, M., Eisenlohr, J., Ensslen, F., Neuhaus, D. H. (2020) Review of technological design options for building integrated photovoltaics (BIPV). Energy Build., 110381 https://doi.org/10.1016/j.enbuild.2020.110381

  • Lai CM, Hokoi S (2017) Experimental and numerical studies on the ther- mal performance of ventilated BIPV curtain walls”. Indoor Built Environ 26(9):1243–1256

  • Lai CM, Lin YP (2011) Energy saving evaluation of the ventilated BIPV walls. Energies 4:948–959

    Article  Google Scholar 

  • Lau SK, Zhao Y, Shabunko V, Chao Y, Lau SSY, Tablada A, Reindl T (2018) Optimization and evaluation of naturally ventilated BIPV facade design. Energy Procedia 150:87–93

    Article  Google Scholar 

  • Lee HM, Yoon JH (2018) Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up. Appl Energy 225:1013–1021

    Article  Google Scholar 

  • Lee JW, Park J, Jung HJ (2014) A feasibility study on a building’s window system based on dye-sensitized solar cells. Energy Build 81:38–47

  • Lee HM, Yoon JH, Kim SC, Shin UC (2017) Operational power performance of south-facing vertical BIPV window system applied in office building. Sol Energy 145:66–77

    Article  Google Scholar 

  • Li X, Peng J, Li N, Wu Y, Fang Y, Li T, Wang C (2019) Optimal design of photovoltaic shading systems for multistory buildings. J Clean Prod 220:1024–1038

    Article  Google Scholar 

  • Liao W, Xu S (2015) Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China. Energy 83:267–275

    Article  CAS  Google Scholar 

  • Luo Y, Zhang L, Liu Z, Xie L, Wang X, Wu J (2018) Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season. Energy 165:326–342

    Article  CAS  Google Scholar 

  • Manser, Joseph S. and Christians, Jeffrey A. and Kamat, Prashant V. (2016). “Intriguing optoelectronic properties of metal halide perovskites”. ChemicalReviews. 116 (21):1295613008. https://doi.org/10.1021/acs.chemrev.6b00136.

  • Maturi L, Lollini R, Moser D, Sparber W (2015) Experimental investigation of a low cost passive strategy to improve the performance of building integrated photovoltaic systems. Sol Energy 111:288–296. https://doi.org/10.1016/j.solener.2014.11.001

    Article  Google Scholar 

  • Mesloub A, Ghosh A, Touahmia M, Albaqawy GA, Noaime E, Alsolami BM (2020) Performance analysis of photovoltaic integrated shading devices (PVSDs) and semi-transparent photovoltaic (STPV) devices retrofitted to a prototype office building in a hot desert climate. Sustainability 12(23):10145

    Article  CAS  Google Scholar 

  • Mirzaei PA, Carmeliet J (2015) Influence of the underneath cavity on buoyant-forced cooling of the integrated photovoltaic panels in building roof: a thermography study. Prog Photovolt Res Appl 23(1):19–29

    Article  Google Scholar 

  • Miyazaki T, Akisawa A, Kashiwagi T (2005) Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew Energy 30(3):281–304. https://doi.org/10.1016/j.renene.2004.05.010

    Article  Google Scholar 

  • Ng PK, Mithraratne N, Kua HW (2013) Energy analysis of semi-transparent BIPV in Singapore buildings. Energy Build 66:274–281. https://doi.org/10.1016/j.enbuild.2013.07.029

    Article  Google Scholar 

  • Olivieri L, Caamaño-Martín E, Moralejo-Vázquez FJ, Martín-Chivelet N, Olivieri F, Neila-Gonzalez FJ (2014) Energy saving potential of semi-transparent photovoltaic elements for building integration. Energy 76:572–583

    Article  Google Scholar 

  • Pantic S, Candanedo L, Athienitis AK (2010) Modeling of energy performance of a house with three configurations of building-integrated photovoltaic/thermal systems. Energy Build 42(10):1779–1789. https://doi.org/10.1016/j.enbuild.2010.05.014

    Article  Google Scholar 

  • Park KE, Kang GH, Kim HI, Yu GJ, Kim J (2010) Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy 35:2681–2687

    Article  CAS  Google Scholar 

  • Paydar MA (2020) Optimum design of building integrated PV module as a movable shading device. Sustain Cities Soc 62:102368–102368. https://doi.org/10.1016/j.scs.2020.102368

    Article  Google Scholar 

  • Peng J, Lu L, Yang H (2013a) An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong. Solar En- ergy 97:293–304. https://doi.org/10.1016/j.solener.2013.08.031

    Article  CAS  Google Scholar 

  • Peng J, Lu L, Yang H, Han J (2013b) Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade. Appl Energy 112:646–656. https://doi.org/10.1016/j.apenergy.2012.12.026

    Article  Google Scholar 

  • Peng J, Curcija DC, Lu L, Selkowitz SE, Yang H, Zhang W (2016) Nu- merical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate. Appl Energy 165:345–356. https://doi.org/10.1016/j.apenergy.2015.12.074

    Article  Google Scholar 

  • Peng J, Curcija DC, Thanachareonkit A, Lee ES, Goudey H, Selkowitz SE (2019) Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window. Appl Energy 242:854–872

    Article  CAS  Google Scholar 

  • Peres AC, Calili R, Louzada D (2020) Impacts of photovoltaic shading devices on energy generation and cooling demand. In 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 1186-1191). IEEE 10.1109/PVSC45281.2020.9300488

  • Poulek V, Matuška T, Libra M, Kachalouski E, Sedláček J (2018) Influence of increased temperature on energy production of roof integrated PV panels. Energy Buil 166:418–425. https://doi.org/10.1016/j.enbuild.2018.01.063

    Article  Google Scholar 

  • Prasad DK, Snow M (2014). Designing with solar power: a source book for building integrated photovoltaics (BiPV). Routledge.https://www.routledge.com/Designing-with-Solar-Power-A-Source-Book-for-Building-Integrated-Photovoltaics/Prasad-Snow/p/book/9780367578084

  • Preet S, Sharma MK, Mathur J, Chowdhury A, Mathur S (2020) Performance evaluation of photovoltaic double-skin facade with forced ventilation in the composite climate. J. Build. Eng 32:101733

    Article  Google Scholar 

  • Qiu C, Yang H, Zhang W (2019a) Investigation on the energy performance of a novel semi-transparent BIPV system integrated with vacuum glazing. In Building Simulation (Vol. 12, No. 1, pp. 29-39). Tsinghua University Press.https://doi.org/10.1007/s12273-018-0464-6

  • Qiu C, Yang H, Sun H (2019b) Investigation on the thermal performance of a novel vacuum PV glazing in different climates. Energy Procedia 158:706–711

    Article  CAS  Google Scholar 

  • Reale A, Cinà L, Malatesta A, De Marco R, Brown TM, Di Carlo A (2014) Estimation of energy production of dye-sensitized solar cell modules for building-integrated photovoltaic applications. Energy Techno 2(6):531–541

    Article  CAS  Google Scholar 

  • Reddy KP, Gupta MVN, Nundy S, Karthick A, Ghosh A (2020) Status of BIPV and BAPV system for less energy-hungry building in India—a review. Appl Sci 10(7):2337

    Article  CAS  Google Scholar 

  • Reijenga T, Architecten B (2001) PV-integration in solar shading (renovation) and PV-integration in atrium glazing (newbuilding), ECN 31 and 42-PETTEN (NL), in: Proceedings 17th European Photovoltaic Solar Energy Conference/brokenurl#www.bear.nl

  • Roberts S, Guariento N (2009) Building integrated photovoltaics: a handbook. Walter de Gruyter. https://doi.org/10.1007/978-3-0346-0486-4

    Article  Google Scholar 

  • Roy A, Ghosh A, Bhandari S, Selvaraj P, Sundaram S, Mallick TK (2019) Color comfort evaluation of dye-sensitized solar cell (DSSC) based building-integrated photovoltaic (BIPV) glazing after 2 years of ambient exposure. J Phys Chem C 123(39):23834–23837. https://doi.org/10.1021/acs.jpcc.9b05591

    Article  CAS  Google Scholar 

  • Schüco (2018) Vordächer Canopies.https://docplayer.org/63579155-Vordaecher-canopies-schueco-89-vordaecher-canopies.html (/Assesed on 0.07.2021)

  • Selvaraj P, Ghosh A, Mallick TK, Sundaram S (2019) Investigation of semitransparent dye-sensitized solar cells for fenestration integration. Renew Energy 141:516–525. https://doi.org/10.1016/j.renene.2019.03.146

    Article  Google Scholar 

  • Shahrestani M, Yao R, Essah E, Shao L, Oliveira AC, Hepbasli A, Biyik E, del Caño T, Rico E, Lechón JL (2017) Experimental and numerical studies to assess the energy performance of naturally ventilated PV façade systems. Sol Energy 147:37–51. https://doi.org/10.1016/j.solener.2017.02.034

    Article  Google Scholar 

  • Shukla AK, Sudhakar K, Baredar P (2016) Exergetic assessment of BIPV module using parametric and photonic energy methods: a review. Energy Buils 119:62–73

  • Shukla AK, Sudhakar K, Baredar P (2017) Recent advancement in BIPV product technologies: a review. Energy and Buildings 140:188–195. https://doi.org/10.1016/j.enbuild.2017.02.015

    Article  Google Scholar 

  • Shukla AK, Sudhakar K, Baredar P, Mamat R (2018) BIPV based sustainable building in South Asian countries. Sol Energy 170:1162–1170. https://doi.org/10.1016/j.solener.2018.06.026

    Article  Google Scholar 

  • Singh D, Chaudhary R (2020) Impact of roof attached Photovoltaic modules on building material performance. Mater. Today: Proc., 46, 445-450. https://doi.org/10.1016/j.matpr.2020.10.050

  • Singh D, Singh SP (2021) Estimation of energy generation and daylight availability for optimum solar cell packing factor of building integrated semitransparent photovoltaic skylight. In: Baredar P.V., Tangellapalli S., Solanki C.S. (eds) Advances in Clean Energy Technologies. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-16-0235-1_28

  • Singh D, Gautam AK, Chaudhary R (2020) Potential and performance estimation of free-standing and building integrated photovoltaic technologies for different climatic zones of India. Energy and Built Environment. 10. 1016/j.enbenv.2020.10.004

  • Singh D, Gautam AK, Chaudhary R (2021a) Application of phase change material in building integrated photovoltaics:a review. Mater. Today: Proc..45(6):4624-4628

  • Singh D, Rawat M, Singh SP, Chaudhary R (2021) Performance of PV integrated wall and roof as a building material. IOP Conference SSer.: Mater. Sci. Eng 1033:012005–012005. https://doi.org/10.1088/1757-899x/1033/1/012005

    Article  Google Scholar 

  • Skandalos N, Karamanis D (2015) PV glazing technologies. Renew Sust Energ Rev 49:306–322

    Article  Google Scholar 

  • Skandalos N, Karamanis D (2016) Investigation of thermal performance of semi-transparent PV technologies. Energy Build 124:19–34. https://doi.org/10.1016/j.enbuild.2016.04.072

  • Stoichkov V, Sweet TKN, Jenkins N, Kettle J (2019) Studying the outdoor performance of organic building-integrated photovoltaics laminated to the cladding of a building prototype. Sol Energy Mater Sol Cells 191:356–364

    Article  CAS  Google Scholar 

  • Sun LL, Yang HX (2010) Impacts of the shading-type building-integrated photovoltaic claddings on electricity generation and cooling load component through shaded windows. Energy Build 42(4):455–460

  • Sun L, Lu L, Yang H (2012) Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Appl Energy 90(1):233–240

    Article  Google Scholar 

  • Sun L, Hu W, Yuan Y, Cao X, Lei B (2015) Dynamic performance of the shading-type building-integrated photovoltaic claddings. Procedia Engineering 121:930–937. https://doi.org/10.1016/j.proeng.2015.09.053

    Article  Google Scholar 

  • Sun Y, Shanks K, Baig H, Zhang W, Hao X, Li Y, He B, Wilson R, Liu H, Sundaram S, Zhang J, Xie L, Mallick T, Wu Y (2018) Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: energy and daylight performance for different architecture designs. Appl Energy 231:972–984

    Article  CAS  Google Scholar 

  • Sun Y, Liu D, Flor JF, Shank K, Baig H, Wilson R, Liu H, Sundaram S, Mallick TK, Wu Y (2020) Analysis of the daylight performance of window integrated photovoltaics systems. Renew Energy 145:153–163

    Article  CAS  Google Scholar 

  • Tabakovic M, Fechner H, van Sark W, Louwen A, Georghiou G, Makrides G, Loucaidou E, Ioannidou M, Weiss I, Arancon S, Betz S (2017) Status and outlook for building integrated photovoltaics (BIPV) in relation to educational needs in the BIPV sector. Energy Procedia 111:993–999. https://doi.org/10.1016/j.egypro.2017.03.262

    Article  Google Scholar 

  • Tak S, Woo S, Park J, Park S (2017) Effect of the changeable organic semi-transparent solar cell window on building energy efficiency and user comfort. Sustainability 9(6):950

    Article  CAS  Google Scholar 

  • Taveres-Cachat E, Bøe K, Lobaccaro G, Goia F, Grynning S (2017) Balancing competing parameters in search of optimal configurations for a fix louvre blade system with integrated PV. Energy Procedia 122:607–612. https://doi.org/10.1016/j.egypro.2017.07.357

    Article  Google Scholar 

  • Timmons D, Harris JM, Roach B (2020) The economics of renewable energy.” Global Development And Environment Institute. Tufts University 52(14):1–52

  • Tina GM, Scavo FB, Aneli S, Gagliano A (2020 A novel building ventilated façade with integrated bifacial photovoltaic modules: analysis of the electrical and thermal performances. In 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1-6). IEEE.10.23919/SpliTech49282.2020.9243810

  • Tripathy M, Yadav S, Panda SK, Sadhu PK (2017) Performance of building integrated photovoltaic thermal systems for the panels installed at optimum tilt angle. Renew Energy 113:1056–1069. https://doi.org/10.1016/j.renene.2017.06.052

    Article  Google Scholar 

  • Vats K, Tiwari GN (2012) Performance evaluation of a building integrated semitransparent photovoltaic thermal system for roof and façade. Energy and Buildings 45:211–218. https://doi.org/10.1016/j.enbuild.2011.11.008

    Article  Google Scholar 

  • Vats K, Tomar V, Tiwari GN (2012) Effect of packing factor on the performance of a building integrated semitransparent photovoltaic thermal (BISPVT) system with air duct. Energy Buil 53:159–165. https://doi.org/10.1016/j.enbuild.2012.07.004

  • Viola F, Romano P, Miceli R, Spataro C, Schettino G, Caruso M, Busacca A, Parisi A, Guarino S, Cino A (2015) Comparison on the use of PV systems in the vertical walls. 2015 International Conference on Renewable Energy Research and Applications (ICRERA pp 1651–1653) https://doi.org/10.1109/ICRERA.2015.7418686

  • Wah WP, Shimoda Y, Nonaka M, Inoue M, Mizuno M (2005) Field study and modeling of semi-transparent PV in power, thermal and optical aspects. J Asian Archit Build Eng 4(2):549–556. https://doi.org/10.3130/jaabe.4.549

    Article  Google Scholar 

  • Wang M, Peng J, Li N, Lu L, Ma T, Yang H (2016) Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model. Energy 112:538–548

    Article  Google Scholar 

  • Wang M, Peng J, Li N, Yang H, Wang C, Li X, Lu T (2017) Comparison of energy performance between PV double skin facades and PV insulating glass units. Appl Energy 194:148–160

    Article  Google Scholar 

  • Wang D, Qi T, Liu Y, Wang Y, Fan J, Wang Y, Du H (2020) A method for evaluating both shading and power generation effects of rooftop solar PV panels for different climate zones of China. Sol Energy 205:432–445

    Article  Google Scholar 

  • Weller B, Hemmerle C, Jakubetz S, Unnewehr S, (2010) Detail Practice: Photovoltaics: Technology, Architecture, Installation. Walter de Gruyter. https://doi.org/10.11129/detail.9783034615709

  • Wong PW, Shimoda Y, Nonaka M, Inoue M, Mizuno M (2008) Semitransparent PV: thermal performance, power generation, daylight modelling and energy saving potential in a residential application. Renew Energy 33(5):1024–1036. https://doi.org/10.1016/j.renene.2007.06.016

    Article  Google Scholar 

  • Wu J, Zhang L, Liu Z, Luo Y, Wu Z, Wang P (2020) Experimental and theoretical study on the performance of semi-transparent photovoltaic glazing façade under shaded conditions. Energy 207:118314

    Article  Google Scholar 

  • Xu T, Qiao Q (2012) Organic photovoltaics: basic concepts and device physics. Encyclopedia of Nanotechnology;Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2022-2031 https://doi.org/10.1007/978-90-481-9751-4_12

  • Xu XW, Su YX (2014) Modeling of natural ventilation in built-in photovoltaic-Trombe wall. In Applied Mechanics and Materials 448:1537–1541

    Google Scholar 

  • Xu S, Liao W, Huang J, Kang J (2014) Optimal PV cell coverage ratio for semi-transparent photovoltaics on office building façades in central China. Energy and Buildings 77:130–138. https://doi.org/10.1016/j.enbuild.2014.03.052

    Article  Google Scholar 

  • Yang T, Athienitis AK (2016) A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems. Renew Sust Energ Rev 66:886–912

    Article  Google Scholar 

  • Yang S, Cannavale A, Di Carlo A, Prasad D, Sproul A, Fiorito F (2020) Performance assessment of BIPV/T double-skin facade for various climate zones in Australia: effects on energy consumption. Sol Energy 199:377–399

    Article  Google Scholar 

  • Yoo SH, Lee ET, Lee JK (1998) Building integrated photovoltaics: a Korean case study. Sol Energy 64:151–161. https://doi.org/10.1016/S0038-092X(98)00115-7

    Article  Google Scholar 

  • Yoon S, Tak S, Kim J, Jun Y, Kang K, Park J (2011) Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems. Build Environ 46(10):1899–1904

    Article  Google Scholar 

  • Yoon JH, Shim SR, An LKH (2013) An experimental study on the annual surface temperature characteristics of amorphous silicon BIPV window. Energy Build 62:166–175

    Article  Google Scholar 

  • Yu JS, Kim JH, Kim SM, Kim JT (2017) Thermal and energy performance of a building with PV-applied double-skin façade. In Proc. Inst. Civ. Eng.: Eng. Sustain. (Vol. 170, No. 6, pp. 345-353).Thomas Telford Ltd.https://doi.org/10.1680/jensu.16.00017

  • Yuan H, Wang W, Xu D, Xu Q, Xie J, Chen X, Shen H (2018) Outdoor testing and ageing of dye-sensitized solar cells for building integrated photovoltaics. Sol Energy 165:233–239

    Article  CAS  Google Scholar 

  • Yun GY, McEvoy M, Steemers K (2007) Design and overall energy per- formance of a ventilated photovoltaic façade. Sol Energy 81(3):383–394. https://doi.org/10.1016/j.solener.2006.06.016

    Article  Google Scholar 

  • Zhang W, Lu L, Peng J, Song A (2016) Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong. Energy and Buildings 128:511–518. https://doi.org/10.1016/j.enbuild.2016.07.016

    Article  Google Scholar 

  • Zhang W, Lu L, Chen X (2017). Performance evaluation of vacuum photovoltaic insulated glass unit. Energy Procedia, 105, 322–326

  • Zhang W, Lu L, Peng J (2017) Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong. Energy 137:1152–1158

    Article  Google Scholar 

  • Zhang X, Lau SK, Lau SSY, Zhao Y (2018) Photovoltaic integrated shading devices (PVSDs): a review. Sol Energy 170:947–968

    Article  Google Scholar 

  • Zogou O, Stapountzis H (2011) Energy analysis of an improved concept of integrated PV panels in an office building in central Greece. Appl Energy 88(3):853–866. https://doi.org/10.1016/j.apenergy.2010.08.023

    Article  Google Scholar 

  • Zomer C, Rüther R (2017a) Simplified method for shading-loss analysis in BIPV systems. Part 2: application in case studies. Energy Build 141:83–95. https://doi.org/10.1016/j.enbuild.2017.02.043

  • Zomer C, Rüther R (2017b) Simplified method for shading-loss analysis in BIPV systems – part 1: theoretical study. Energy and Buildings 141:69–82. https://doi.org/10.1016/j.enbuild.2017.02.042

    Article  Google Scholar 

  • Zomer C, Custódio I, Antoniolli A, Rüther R (2020) Performance assessment of partially shaded building-integrated photovoltaic (BIPV) systems in a positive-energy solar energy laboratory building: architecture perspectives. Sol Energy 211:879–896. https://doi.org/10.1016/j.solener.2020.10.026

    Article  Google Scholar 

Download references

Availability of data and materials

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Digvijay Singh and Rubina Chaudhary, conceptualization; Rubina Chaudhary and Alagar Karthick, supervision; Digvijay Singh, Rubina Chaudhary, and Alagar Karthick, methodology; Alagar Karthick, Digvijay Singh, and Rubina Chaudhary, investigations and writing; Digvijay Singh and Rubina Chaudhary, original draft; Digvijay Singh and Rubina Chaudhary writing — original draft; Digvijay Singh and Rubina Chaudhary Karthick, validation.

Corresponding author

Correspondence to Alagar Karthick.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, ., Chaudhary, R. & Karthick, A. Review on the progress of building-applied/integrated photovoltaic system. Environ Sci Pollut Res 28, 47689–47724 (2021). https://doi.org/10.1007/s11356-021-15349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15349-5

Keywords

Navigation