Skip to main content
Log in

Influence of C14 alkane stress on antioxidant defense capacity, mineral nutrient element accumulation, and cadmium uptake of ryegrass

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In order to explore the influence of C14 alkane on physiological stress responses, mineral nutrient elements uptake, cadmium (Cd) transfer, and uptake characteristics of Lolium perenne L. (ryegrass), a series of pot trials were conducted which included a moderate level of Cd (2.182 mg·kg−1) without (control) and with five levels of C14 alkane (V/m, 0.1%, 0.2%, 0.5%, 1%, 2%). Biomass and Cd content in the root and shoot, chlorophyll content, antioxidant enzymes activity, and mineral nutrient elements in the shoot of ryegrass were determined at the end of the experiment. The results indicated that Cd uptake significantly elevated at 0.1% C14 alkane treatment, then gradually decreased with the increase of C14 alkane concentration. Compared with the control, chlorophyll content was significantly suppressed and malondialdehyde (MDA) concentration obviously increased. Superoxide dismutase (SOD) activity and catalase (CAT) activity significantly increased to prevent the C14 alkane stress. With the increase of C14 alkane, the Mn concentration gradually increased; Mg and Fe significantly decreased. Correlation analysis showed that Mn was positively correlated with SOD (with the exception of 2% treatment) and CAT (p < 0.01), and negatively correlated with Cd uptake (p < 0.01). It implied that the increase of Mn induced by C14 alkane stress was an important reason for the decrease of Cd uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that (the/all other) data supporting the findings of this study are available within the article (and its supplementary information files).

References

  • Adam G, Duncan H (2002) Influence of diesel fuel on seed germination. Environ Pollut 120:363–370

    Article  CAS  Google Scholar 

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  Google Scholar 

  • Ahammed GJ, Li X, Xia X-J, Shi K, Zhou Y-H, Yu J-Q (2015) Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato. Environ Pollut 201:58–66

    Article  CAS  Google Scholar 

  • Ahammed GJ, Wang M-M, Zhou Y-H, Xia X-J, Mao W-H, Shi K, Yu J-Q (2012) The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress. Ecotox Environ Safe 80:132–139

    Article  CAS  Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colón-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994

    Article  CAS  Google Scholar 

  • Baruah P, Saikia RR, Baruah PP, Deka S (2014) Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk. Environ Sci Pollut Res 21:12530–12538

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Carvalho MEA, Piotto FA, Franco MR, Rossi ML, Martinelli AP, Cuypers A, Azevedo RA (2019) Relationship between Mg, B and Mn status and tomato tolerance against Cd toxicity. J Environ Manage 240:84–92

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512–513:143–153

    Article  Google Scholar 

  • Chen YX, Lin Q, He YF, Tian GM (2004) Behavior of Cu and Zn under combined pollution of 2,4-dichlorophenol in the planted soil. Plant Soil 261:127–134

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere 90:2542–2548

    Article  CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    Article  CAS  Google Scholar 

  • Cramer GR, Nowak RS (1992) Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiol Plantarum 84:600–605

    Article  CAS  Google Scholar 

  • Cui B, Zhang X, Han G, Li K (2016) Antioxidant defense response and growth reaction of amorpha fruticosa seedlings in petroleum-contaminated soil. Water Air Soil Poll 227:121

    Article  Google Scholar 

  • Dong Z-Y, Huang W-H, Xing D-F, Zhang H-F (2013) Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. J Hazard Mater 260:399–408

    Article  CAS  Google Scholar 

  • Gao M, Dong Y, Zhang Z, Song W, Qi Y (2017) Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress. Chemosphere 172:418–428

    Article  CAS  Google Scholar 

  • Gao M, Liu Y, Dong Y, Song Z (2018) Photosynthetic and antioxidant response of wheat to di(2-ethylhexyl) phthalate (DEHP) contamination in the soil. Chemosphere 209:258–267

    Article  CAS  Google Scholar 

  • Gao Y, Zhu L (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178

    Article  CAS  Google Scholar 

  • Habibul N, Chen J-J, Hu Y-Y, Hu Y, Yin H, Sheng G-P, Yu H-Q (2019) Uptake, accumulation and metabolization of 1-butyl-3-methylimidazolium bromide by ryegrass from water: prospects for phytoremediation. Water Res 156:82–91

    Article  CAS  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microb Biotechnol 1:63–70

    CAS  Google Scholar 

  • Heenan DP, Campbell LC (1981) Influence of potassium and manganese on growth and uptake of magnesium by soybeans (Glycine max (L.) Merr. cv. Bragg). Plant Soil 61:447–456

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Huang R, Dong M, Mao P, Zhuang P, Paz-Ferreiro J, Li Y, Li Y, Hu X, Netherway P, Li Z (2020) Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Sci Total Environ. 721:137581

    Article  CAS  Google Scholar 

  • Li L, Yi H (2012) Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol Biochem 58:46–53

    Article  CAS  Google Scholar 

  • Li Y, Xie T, Zha Y, Du W, Yin Y, Guo H (2021) Urea-enhanced phytoremediation of cadmium with willow in pyrene and cadmium contaminated soil. J Hazard Mater 405:124257

    Article  CAS  Google Scholar 

  • Lichtenthaler H, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • Lin Q, Shen K-L, Zhao H-M, Li W-H (2008) Growth response of Zea mays L. in pyrene–copper co-contaminated soil and the fate of pollutants. J Hazard Mater 150:515–521

    Article  CAS  Google Scholar 

  • Liu H, Zhang C, Wang J, Zhou C, Feng H, Mahajan MD, Han X (2017) Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosphere 171:240–247

    Article  CAS  Google Scholar 

  • Lu M, Zhang Z-Z, Wang J-X, Zhang M, Xu Y-X, Wu X-J (2014) Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environ Sci Technol 48:1158–1165

    Article  CAS  Google Scholar 

  • McSwain BD, Tsujimoto HY, Arnon DI (1976) Effects of magnesium and chloride ions on light-induced electron transport in membrane fragments from a blue-green alga. BBA-Biomembranes 423:313–322

    CAS  Google Scholar 

  • Millaleo R, Reyes-Díaz M, Ivanov A, Mora M, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481

    Article  Google Scholar 

  • Mitsou K, Koulianou A, Lambropoulou D, Pappas P, Albanis T, Lekka M (2006) Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 62:275–284

    Article  CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Article  Google Scholar 

  • Peng K, Luo C, You W, Lian C, Li X, Shen Z (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L. J Hazard Mater 154:674–681

    Article  CAS  Google Scholar 

  • Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742

    Article  CAS  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Manganese-induced cadmium stress tolerance in rice seedlings: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. Cr Biol 339:462–474

    Article  Google Scholar 

  • Ramos I, Esteban E, Lucena JJ, Gárate, A.n., (2002) Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Sci 162:761–767

    Article  CAS  Google Scholar 

  • Rees F, Germain C, Sterckeman T, Morel J-L (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395:57–73

    Article  CAS  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  Google Scholar 

  • Savage KN, Krumholz LR, Gieg LM, Parisi VA, Suflita JM, Allen J, Philp RP, Elshahed MS (2010) Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns. Fems Microbiol Ecol 72:485–495

    Article  CAS  Google Scholar 

  • Shentu J, He Z, Yang X-E, Li T (2008) Accumulation properties of cadmium in a selected vegetable-rotation system of southeastern china. J Agr Food Chem 56:6382–6388

    Article  CAS  Google Scholar 

  • Steliga T, Kluk D (2020) Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotox Environ Safe 194:110409

    Article  CAS  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  Google Scholar 

  • Wang C, Zhao Y, Zheng R, Ding X, Wei W, Zuo Z, Chen Y (2006) Effects of tributyltin, benzo[a]pyrene, and their mixture on antioxidant defense systems in Sebastiscus marmoratus. Ecotox Environ Safe 65:381–387

    Article  CAS  Google Scholar 

  • Wang J, Chen X, Chi Y, Chu S, Hayat K, Zhi Y, Hayat S, Terziev D, Zhang D, Zhou P (2020) Optimization of NPK fertilization combined with phytoremediation of cadmium contaminated soil by orthogonal experiment. Ecotox Environ Safe 189:109997

    Article  CAS  Google Scholar 

  • Wang K, Zhu Z, Huang H, Li T, He Z, Yang X, Alva A (2012a) Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii. J Soil Sediment 12:556–564

    Article  CAS  Google Scholar 

  • Wang L, Huang X, Ma F, Ho S-H, Wu J, Zhu S (2017) Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro- and macroelements uptake in Phragmites australis. Environ Sci Pollut R 24:3593–3607

    Article  CAS  Google Scholar 

  • Wang P, Zhang S, Wang C, Lu J (2012b) Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans. Ecotox Environ Safe 78:28–34

    Article  CAS  Google Scholar 

  • Wang Z, Xu Y, Zhao J, Li F, Gao D, Xing B (2011) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J Hazard Mater 190:677–685

    Article  CAS  Google Scholar 

  • Xi Y, Song Y, Liu H, Johnson DM, Huang Y (2018) Selenium enhanced degradation of diesel by Erigeron annuus. J Soil Sediment 18:1906–1914

    Article  CAS  Google Scholar 

  • Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang Y (2014) Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498

    Article  CAS  Google Scholar 

  • Xie W, Li R, Li X, Liu P, Yang H, Wu T, Zhang Y (2018) Different responses to soil petroleum contamination in monocultured and mixed plant systems. Ecotox Environ Safe 161:763–768

    Article  CAS  Google Scholar 

  • Xie W, Zhang Y, Li R, Yang H, Wu T, Zhao L, Lu Z (2017) The responses of two native plant species to soil petroleum contamination in the Yellow River Delta. China Environ Sci Pollut Res 24:24438–24446

    Article  CAS  Google Scholar 

  • Yuan L, Guo P, Guo S, Wang J, Huang Y (2021) Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. Environ Res 198:111290

    Article  CAS  Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468

    Article  CAS  Google Scholar 

  • Zeng P, Guo Z, Xiao X, Peng C, Liu L, Yan D, He Y (2020) Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil. Ecotox Environ Safe 189:109973

    Article  CAS  Google Scholar 

  • Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    Article  CAS  Google Scholar 

  • Zhang Z, Rengel Z, Meney K, Pantelic L, Tomanovic R (2011) Polynuclear aromatic hydrocarbons (PAHs) mediate cadmium toxicity to an emergent wetland species. J Hazard Mater 189:119–126

    Article  CAS  Google Scholar 

  • Zhao Z-Q, Zhu Y-G, Li H-Y, Smith SE, Smith FA (2004) Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). Environ Int 29:973–978

    Article  CAS  Google Scholar 

  • Zhou L, Xia M, Wang L, Mao H (2016) Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.). Chemosphere 159:420–425

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by China Postdoctoral Science Foundation (No. 2019M652453), National Natural Science Foundation of China (No. 41977140), Qilu University of Technology (Shandong Academy of Sciences) Youth Doctoral Cooperation Fund Project (No. 2018BSHZ0016), and Liao Ning Revitalization Talents Program (No. XLYC1802111).

Author information

Authors and Affiliations

Authors

Contributions

Lizhu Yuan: performed the experiments, data processing, draft preparation. Penghong Guo: reviewing, revising, editing the manuscript. Shuhai Guo: conceived and designed experiments. Jianing Wang: conceptualization, methodology. Yujie Huang: participated in some tests. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuhai Guo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Gangrong Shi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 177 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Guo, P., Guo, S. et al. Influence of C14 alkane stress on antioxidant defense capacity, mineral nutrient element accumulation, and cadmium uptake of ryegrass. Environ Sci Pollut Res 29, 13857–13868 (2022). https://doi.org/10.1007/s11356-021-16806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16806-x

Keywords

Navigation