Skip to main content

Advertisement

Log in

Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles

  • MODERN INDIVIDUAL MOBILITY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Electric vehicles (EVs) are promoted due to their potential for reducing fuel consumption and greenhouse gas (GHG) emissions. A comparative life-cycle assessment (LCA) between different technologies should account for variation in the scenarios under which vehicles are operated in order to facilitate decision-making regarding the adoption and promotion of EVs. In this study, we compare life-cycle GHG emissions, in terms of CO2eq, of EVs and conventional internal combustion engine vehicles (ICEV) over a wide range of use-phase scenarios in the USA, aiming to identify the vehicles with lower GHG emissions and the key uncertainties regarding this impact.

Methods

An LCA model is used to propagate the uncertainty in the use phase into the greenhouse gas emissions of different powertrains available today for compact and midsize vehicles in the US market. Monte Carlo simulation is used to explore the parameter space and gather statistics about GHG emissions of those powertrains. Spearman’s partial rank correlation coefficient is used to assess the level of contribution of each input parameter to the variance of GHG intensity.

Results and discussion

Within the scenario space under study, battery electric vehicles are more likely to have the lowest GHG emissions when compared with other powertrains. The main drivers of variation in the GHG impact are driver aggressiveness (for all vehicles), charging location (for EVs), and fuel economy (for ICEVs).

Conclusions

The probabilistic approach developed and applied in this study enables an understanding of the overall variation in GHG footprint for different technologies currently available in the US market and can be used for a comparative assessment. Results identify the main drivers of variation and shed light on scenarios under which the adoption of current EVs can be environmentally beneficial from a GHG emissions standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anair D, Mahmassani A (2012) State of charge: electric vehicles’ global warming emissions and fuel-cost savings across the United States. UCS Publications, Cambridge, MA

  • Bandivadekar A (2008) Evaluating the impact of advanced vehicle and fuel technologies in US light-duty vehicle fleet. Ph.D. thesis, Massachusetts Institute of Technology

  • Bandivadekar A, Bodek K, Cheah L, Evans C, Groode T, Heywood J, Kasseris E, Kromer M, Weiss M (2008) On the road in 2035: reducing transportation’s petroleum consumption and GHG emissions. MIT report # LFEE 2008-05 RP, Massachusetts Institute of Technology, Boston, MA, USA

  • Baptista P, Silva C, Farias T, Gonçalves G (2009) Full life cycle analysis of market penetration of electricity based vehicles. World Electr Veh J 3:1–6

    Google Scholar 

  • Burnham A, Wang M, Wu Y (2006) Development and applications of GREET 2.7—the transportation vehicle-cycle model. Tech. Rep., ANL/ESD/06–5, Argonne National Lab., IL, USA

  • Carlson R, Lohse-Busch H, Duoba M, Shidore N (2009) Drive cycle fuel consumption variability of plug-in hybrid electric vehicle due to aggressive driving. SAE Technical Paper 2009-01-1335

  • Cheah L (2013) Use phase parameter variation and uncertainty in LCA: automobile case study. In: Nee AYC et al. (eds) Re-engineering manufacturing for sustainability. Springer, Singapore, pp 553–557

  • Doucette R, McCulloch M (2011) Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energ Policy 39(2):803–811

    Article  Google Scholar 

  • Duoba M, Lohse-Busch H, Bohn T (2005) Investigating vehicle fuel economy robustness of conventional and hybrid electric vehicles. In: Proceedings of the 21st Worldwide Battery, Hybrid and Fuel-Cell Electric Vehiche Symposium and Exposition (EVS-21)

  • Earleywine M, Gonder J, Markel T, Thornton M (2010) Simulated fuel economy and performance of advanced hybrid electric and plug-in hybrid electric vehicles using in-use travel profiles. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, IEEE, pp 1–6

  • Elgowainy A, Han J, Poch L, Wang M, Vyas A, Mahalik M, Rousseau A (2010) Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles. Tech. Rep., ANL/ESD/09–2, Argonne National Lab., IL, USA

  • EPA (2012) Emissions and Generation Resource Integrated Database (eGRID2012), Tech. Rep., the Environmental Protection Agency (EPA), http://www.epa.gov/cleanenergy/egrid/index.htm. Accessed 12 Dec 2013

  • EPA (2014) EPA fuel economy data file. Environmental Protection Agency. http://www.fueleconomy.gov/feg/epadata/14data.zip. Accessed 21 Feb 2014

  • Freire F, Marques P (2012) Electric vehicles in Portugal: an integrated energy, greenhouse gas and cost life-cycle analysis. In: Sustainable Systems and Technology (ISSST), 2012 I.E. International Symposium on, IEEE, pp 1–6

  • Hamby D (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154

    Article  CAS  Google Scholar 

  • Hawkins T, Gausen O, Strømman A (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17:1–18

    Article  Google Scholar 

  • Hawkins T, Singh B, Majeau-Bettez G, Strømman A (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64

    Article  CAS  Google Scholar 

  • Hu P, Reuscher T (2004) Summary of travel trends: 2001 national household travel survey (NHTS), Tech. Rep

  • Huijbregts MA, Gilijamse W, Ragas AM, Reijnders L (2003) Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environ Sci Technol 37(11):2600–2608

    Article  CAS  Google Scholar 

  • JD Power (2010) Drive Green 2020: more hope than reality. JD Power and Associates, Tech. Rep., McGraw-Hill, New York, USA

  • Kocoloski M, Mullins KA, Venkatesh A, Griffin WM (2013) Addressing uncertainty in life-cycle carbon intensity in a national low-carbon fuel standard. Energy Policy 56, May 2013, pp 41–50

  • Lave L, Hendrickson C, McMichael F (1995) Environmental implications of electric cars. Science 268(5213):993–995

    Article  CAS  Google Scholar 

  • LeBlanc D, Sivak M, Bogard S (2010) Using naturalistic driving data to assess variations in fuel efficiency among individual drivers. Tech. Rep., Report UMTRI-2010-34, The University of Michigan Transportation Research Institute

  • Ma H, Balthasar F, Tait N, Riera-Palou X, Harrison A (2012) A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energ Policy 44(1):160–173

    Article  Google Scholar 

  • Mock P, German J, Bandivadekar A, Riemersma I (2012) Discrepancies between type-approval and “real-world” fuel consumption and CO2 values: assessment for 2001–2011 European passenger cars. International Council for Clean Transportation, Working paper 2012–2

  • Nansai K, Tohno S, Kono M, Kasahara M (2002) Effects of electric vehicles (EV) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of EV users in Japan. Appl Energy 71(2):111–125

    Article  CAS  Google Scholar 

  • Raykin L, Roorda M, MacLean H (2012) Impacts of driving patterns on tank-to-wheel energy use of plug-in hybrid electric vehicles. Transp Res Part D Transp Environ 17(3):243–250

    Article  Google Scholar 

  • Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42(9):3170–3176

    Article  CAS  Google Scholar 

  • Santos A, McGuckin N, Nakamoto H, Gray D, Liss S (2011) Summary of travel trends: 2009 National Household Travel Survey. Tech. Rep., US Department of Transportation

  • Schrank D, Lomax T, Eisele B TTI’s (2011) 2011 urban mobility report-powered by INRIX Traffic Data, Texas Transportation Institute, The Texas A&M University System, College Station, TX, USA

  • Silva C, Ross M, Farias T (2009) Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles. Energ Convers Manage 50(7):1635–1643

    Article  CAS  Google Scholar 

  • Singh M (1998) Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Tech. Rep., ANL/ES/RP–96387-Vol.3, Argonne National Lab., IL, USA

  • Sullivan J, Williams R, Yester S, Cobas-Flores E, Chubbs S, Hentges S, Pomper S (1998) S. of automotive engineers, life cycle inventory of a generic U.S. family sedan: overview of results. USCAR AMP Project, SAE technical paper series, Society of Automotive Engineers

  • Wang M, Plotkin S, Santini D, He J, Gaines L, Patterson P (1997) Total energy-cycle energy and emissions impacts of hybrid electric vehicles. Tech. Rep., ANL/ES/CP–94277, Argonne National Lab., IL, USA

Download references

Acknowledgments

This work has been partly supported by the FEDER/COMPETE FCT projects MIT/MCA/0066/2009 and PTDC/SEN-TRA/117251/2010, the MIT Portugal Program, and EMSURE CENTRO 07-0224-FEDER-002004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Noshadravan.

Additional information

Responsible editor: Hans-Joerg Althaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noshadravan, A., Cheah, L., Roth, R. et al. Stochastic comparative assessment of life-cycle greenhouse gas emissions from conventional and electric vehicles. Int J Life Cycle Assess 20, 854–864 (2015). https://doi.org/10.1007/s11367-015-0866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0866-y

Keywords

Navigation