Skip to main content
Log in

Approaches to fill data gaps and evaluate process completeness in LCA—perspectives from solid waste management systems

  • DATA AVAILABILITY, DATA QUALITY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Large data amounts are required in an LCA, but often, site-specific data are missing and less representative surrogate data must be used to fill data gaps. No standardized rules exist on how to address data gaps and process completeness. We suggest a systematic evaluation of process completeness, identification of data gaps, and application of surrogate values to fill the gaps. The study focus on foreground process data.

Methods

A solid waste management (SWM) scenario was used to illustrate the suggested method. The expected input and output flows in a waste incineration model were identified based on legislation and expert judgment, after which process completeness scores were calculated and missing flows identified. To illustrate the use of different types of surrogate data to fill data gaps, data gaps were selected for 16 different parameters in five SWM processes. We compared the global warming potential (GWP) from using surrogate data, and from leaving the gap, to identify the data gaps where representative surrogate data should be used.

Results and discussion

The completeness score for the material inputs to waste incineration was 78%, and the missing flows were auxiliary fuels and precipitation chemicals. The completeness score for air emissions were between 38 and 50% with and without expert judgment. If only greenhouse gases were considered (CO2, CH4, and N2O), the completeness score would be 67%. Applying weighting factors according to the greenhouse gas contribution in the USA gave a completeness score of 94%. The system-wide data gaps, where representative surrogate data should be applied, were the CH4 release from composting; electricity generation efficiency of incineration; recovery efficiencies at a material recovery facility; and composition of the plastic, metal, and paper fractions in the household waste; in these cases, leaving the gap changed the GWP results by > 5%.

Conclusions

Completeness evaluation should take into account the relevance and importance of flows; relevance depends on the considered life cycle impact methods and importance depends on the weighting of the different flows. The set of expected flows and evaluation of relevance and importance must be documented in a transparent manner. The choice of surrogate values to fill data gaps depends on the availability of secondary data and on whether the data gap matters, i.e., significantly affects the LCA results. The suggested method can be used to properly document the identification of missing flows and to select and apply surrogate values to fill the data gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Astrup T, Møller J, Fruergaard T (2009) Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27:789–799. https://doi.org/10.1177/0734242x09348529

    Article  CAS  Google Scholar 

  • Astrup TF, Tonini D, Turconi R, Boldrin A (2014) Life cycle assessment of thermal waste-to-energy technologies: review and recommendations. Waste Manag 37:104–115. https://doi.org/10.1016/j.wasman.2014.06.011

    Article  CAS  Google Scholar 

  • Bisinella V, Götze R, Conradsen K, Damgaard A, Christensen TH, Astrup TF (2017) Importance of waste composition for life cycle assessment of waste management solutions. J Clean Prod 164:1180–1191. https://doi.org/10.1016/j.jclepro.2017.07.013

    Article  Google Scholar 

  • Boldrin A, Andersen JKJK, Møller J, Christensen THTH, Favoino E (2009) Composting and compost utilization: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27:800–812. https://doi.org/10.1177/0734242X09345275

    Article  CAS  Google Scholar 

  • Brogaard LK, Damgaard A, Jensen MB, Barlaz M, Christensen TH (2014) Evaluation of life cycle inventory data for recycling systems. Resour Conserv Recycl 87:30–45. https://doi.org/10.1016/j.resconrec.2014.03.011

    Article  Google Scholar 

  • Burnley SJ (2007) A review of municipal solid waste composition in the United Kingdom. Waste Manag 27:1274–1285

    Article  Google Scholar 

  • Canals LMI, Azapagic A, Doka G, Jefferies D, King H, Mutel C, Nemecek T, Roches A, Sim S, Stichnothe H, Thoma G, Williams A (2011) Approaches for addressing life cycle assessment data gaps for bio-based products. J Ind Ecol 15:707–725. https://doi.org/10.1111/j.1530-9290.2011.00369.x

    Article  CAS  Google Scholar 

  • Clavreul J, Guyonnet D, Tonini D, Christensen TH (2013) Stochastic and epistemic uncertainty propagation in LCA. Int J Life Cycle Assess 18:1393–1403. https://doi.org/10.1007/s11367-013-0572-6

    Article  Google Scholar 

  • Clavreul J, Baumeister H, Christensen TH, Damgaard A (2014) An environmental assessment system for environmental technologies. Environ Model Softw 60:18–30. https://doi.org/10.1016/j.envsoft.2014.06.007

    Article  Google Scholar 

  • Danish EPA (2010) Bekendtgørelse om visse virksomheders afgivelse af miljøoplysninger (historisk)

  • De la Cruz FB, Barlaz MA (2010) Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. Environ Sci Technol 44(12):4722–4728

  • Edelen A, Ingwersen W (2016) Guidance on data quality assessment for life cycle inventory data. US EPA, Cincinnati, Ohio, USA

  • Edjabou ME, Bang Jensen M, Götze R, Pivnenko K, Petersen C, Scheutz C, Astrup TF (2014) Municipal solid waste composition: sampling methodology, statistical analyses, and case study evaluation. Waste Manag 36:12–23

    Article  Google Scholar 

  • European Commission (2006) Vejledning for gennemførelse af det europæiske Pollutant Release and Transfer Register (PRTR)

  • European Parliament and Council (2010) Directive 2010/75/Eu of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (recast). doi:https://doi.org/10.3000/17252555.L_2010.334.eng

  • Fazio S, Garraín D, Mathieux F, De la Rúa C, Recchioni M, Lechón Y (2015) Method applied to the background analysis of energy data to be considered for the European Reference Life Cycle Database (ELCD). Springerplus 4. doi:https://doi.org/10.1186/s40064-015-0914-x

  • Fitzgerald G, Krones J, Themelis N (2012) Greenhouse gas impact of dual stream and single stream collection and separation of recyclables. Resour Conserv Recycl 69:50–56. https://doi.org/10.1016/j.resconrec.2012.08.006

  • Funtowicz SO, Ravetz JR (1990) Uncertainty and quality in science for policy, in: Uncertainty and quality in science for policy. Kluwer Academic Publishers, p 229

  • Garraín D, Fazio S, de la Rúa C, Recchioni M, Lechón Y, Mathieux F (2015) Background qualitative analysis of the European reference life cycle database (ELCD) energy datasets – part II: electricity datasets. Springerplus 4:30. https://doi.org/10.1186/s40064-015-0812-2

    Article  CAS  Google Scholar 

  • Götze R, Boldrin A, Scheutz C, Astrup TF (2016) Physico-chemical characterisation of material fractions in household waste: overview of data in literature. Waste Manag 49:3–14. https://doi.org/10.1016/j.wasman.2016.01.008

    Article  CAS  Google Scholar 

  • Hauschild MZ, Goedkoop M, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, Schryver A, Humbert S, Laurent A, Sala S, Pant R, Guinee J, Heijungs R, Huijbregts M, Jolliet O, Margni M, De Schryver A, Humbert S, Laurent A, Sala S, Pant R, Guinée J, Heijungs R, Huijbregts M, Jolliet O, Margni M, Schryver A, Humbert S, Laurent A, Sala S, Pant R (2012) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697

    Article  CAS  Google Scholar 

  • Henriksen T, Astrup TF, Damgaard A (2017) Linking data choices and context specificity in life cycle assessment of waste treatment technologies: a landfill case study. J Ind Ecol 00:1–11. https://doi.org/10.1111/jiec.12709

    Article  CAS  Google Scholar 

  • Hischier R, Baitz M, Bretz R, Frischknecht R, Jungbluth N, Marheineke T, Mckeown P, Oele M, Osset P, Renner I, Skone T, Wessman H, Beaufort ASH De (2001) Guidelines for consistent reporting of exchanges from/to nature within life cycle inventories (LCI). Int J Life Cycle Assess 6:192–198. https://doi.org/10.1007/BF02979374

    Article  Google Scholar 

  • Hodge KL, Levis JW, DeCarolis JF, Barlaz MA (2016) Systematic evaluation of industrial, commercial, and institutional food waste management strategies in the United States. Environ Sci Technol 50:8444–8452. https://doi.org/10.1021/acs.est.6b00893

    Article  CAS  Google Scholar 

  • Hodson EL, Martin D, Prinn RG (2010) The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom. Atmos Chem Phys 10:1899–1910

    Article  CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) Urban development series - knowledge papers - waste composition. World Bank, Washington DC, USA

  • Huijbregts MAJ, Norris G, Bretz R, Ciroth A, Maurice B, von Bahr B, Weidema B, Beaufort ASH De (2001) Framework for modelling data uncertainty in life cycle inventories. Int J Life Cycle Assess 6:127–132. https://doi.org/10.1007/BF02978728

    Article  Google Scholar 

  • IPCC (2006) Guidelines for National Greenhouse Gas Inventories, Volume 5 Waste. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html. Accessed 20 Oct 2019

  • ISO (2006) ISO 14044 - Environmental management – life cycle assessment – requirements and guidelines. Geneva, Switzerland

  • JRC (2010) ILCD handbook - International Reference Life Cycle Data System - general guide for life cycle assessment - detailed guidance, International Reference Life Cycle Data System (ILCD) Handbook. Ispra, Italy. https://doi.org/10.2788/38479

  • Laner D, Rechberger H, Astrup T (2015) Applying fuzzy and probabilistic uncertainty concepts to the material flow analysis of palladium in Austria. J Ind Ecol 19:1055–1069. https://doi.org/10.1111/jiec.12235

    Article  Google Scholar 

  • Larsen AW, Merrild H, Christensen TH (2009) Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):754–762

  • Levis JW, Barlaz MA (2013) Composting process model documentation, North Carolina State University. https://drive.google.com/file/d/14_tnYqlrGWXQVw0_wB1u0mfX5wNbLRdE/view. Accessed 05 June 2019

  • Little RJ, D’Aostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, Neaton JD, Rotnitzky A, Scharfstein D, Shih WJ, Siegel JP, Stern H (2012) The prevention and treatment of missing data in clinical trials. N Engl J Med 367:1355–1360

    Article  CAS  Google Scholar 

  • Majeau-Bettez G, Strømman AH, Hertwich EG (2011) Evaluation of process- and input-output-based life cycle inventory databases with regards to truncation and aggregation issues. Environ Sci Technol 45:10170–10177. https://doi.org/10.1021/es201308x

    Article  CAS  Google Scholar 

  • Merrild H, Damgaard A, Christensen TH (2009) Recycling of paper: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):746–753

  • Moberg A, Borggren C, Ambell C, Finnveden G, Guldbrandsson F, Bondesson A, Malmodin J, Bergmark P (2014) Simplifying a life cycle assessment of a mobile phone. Int J Life Cycle Assess 19:979–993. https://doi.org/10.1007/s11367-014-0721-6

    Article  CAS  Google Scholar 

  • Moreau V, Bage G, Marcotte D, Samson R (2012) Statistical estimation of missing data in life cycle inventory: an application to hydroelectric power plants. J Clean Prod 37:335–341. https://doi.org/10.1016/j.jclepro.2012.07.036

    Article  Google Scholar 

  • Pressley PN, Levis JW, Damgaard A, Barlaz MA, DeCarolis JF (2015) Analysis of material recovery facilities for use in life-cycle assessment. Waste Manag 35:307–317. https://doi.org/10.1016/j.wasman.2014.09.012

    Article  Google Scholar 

  • Riber C, Petersen C, Christensen TH (2009) Chemical composition of material fractions in Danish household waste. Waste Manag 29:1251–1257. https://doi.org/10.1016/j.wasman.2008.09.013

    Article  CAS  Google Scholar 

  • RTI International (2003) Life-cycle inventory data sets for material production of aluminum, glass, paper, plastic, and steel in North America. Research Triangle Park, North Carolina, USA

  • SCS Engineers (2014) Wake County, North Carolina. Waste characterization study: summary of results. Wake County, North Carolina, USA

  • Steinmann ZJN, Venkatesh A, Hauck M, Schipper AM, Karuppiah R, Laurenzi IJ, Huijbregts MAJ (2014) How to address data gaps in life cycle inventories: a case study on estimating CO2 emissions from coal-fired electricity plants on a global scale. Environ Sci Technol 48:5282–5289. https://doi.org/10.1021/es500757p

    Article  CAS  Google Scholar 

  • Subramanian V, Golden JS (2016) Patching life cycle inventory (LCI) data gaps through expert elicitation: case study of laundry detergents. J Clean Prod 115:354–361. https://doi.org/10.1016/j.jclepro.2015.11.098

    Article  Google Scholar 

  • Tonini D, Brogaard LK-S, Astrup TF (2017) Food waste prevention in Denmark: identification of hotspots and potentials with Life Cycle Assessment. Danish Environmental Protection Agency, København K

  • US EPA (2006) Part II - 40 CFR part 60 - standards of performance for new stationary sources and emission guidelines for existing sources: large municipal waste combustors; final rule

  • US EPA (2016) Advancing Sustainable Materials Management: 2014 Fact sheet - assessing trends in material generation, recycling, composting, combustion with energy recovery and landfilling in the United States. US EPA, USA

  • US EPA (2017) eGRID2014 Data File v2 (Version 2.0) [WWW Document]. URL https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid (accessed 5.21.18)

  • US EPA (2018) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2016. US EPA, USA

  • van den Berg NW, Huppes G, Lindeijer E, Ven BL Van Der Wrisberg NM (1999) Quality assessment for LCA

  • Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Vadenbo CO, Wenet G (2013) Overview and methodology. Data quality guideline for the ecoinvent database version 3. St. Gallen, Switzerland

  • Yoshida H, Clavreul J, Scheutz C, Christensen TH (2014) Influence of data collection schemes on the life cycle assessment of a municipal wastewater treatment plant. Water Res 56:292–303. https://doi.org/10.1016/j.watres.2014.03.014

    Article  CAS  Google Scholar 

  • Yoshida H, Nielsen MP, Scheutz C, Jensen LS, Bruun S, Christensen TH (2016) Long-term emission factors for land application of treated organic municipal waste. Environ Model Assess 21:111–124. https://doi.org/10.1007/s10666-015-9471-5

    Article  Google Scholar 

  • Zhou X, Zhou C, Liu D, Ding X (2014) Applied missing data analysis in the health sciences: chapter 1. John Wiley and Sons Inc., Hoboken

    Google Scholar 

Download references

Funding

The research was financially supported by the Technical University of Denmark through a scholarship from the R98 foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Henriksen.

Additional information

Responsible editor: Shabbir Gheewala

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriksen, T., Levis, J.W., Barlaz, M.A. et al. Approaches to fill data gaps and evaluate process completeness in LCA—perspectives from solid waste management systems. Int J Life Cycle Assess 24, 1587–1601 (2019). https://doi.org/10.1007/s11367-019-01592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-019-01592-z

Keywords

Navigation