Skip to main content
Log in

Comparative life cycle assessment of metal arc welding technologies by using engineering design documentation

  • LCA FOR MANUFACTURING AND NANOTECHNOLOGY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The paper aims to analyze and compare the environmental performances of metal arc welding technologies: gas metal arc welding (GMAW), shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW), submerged arc welding (SAW), and flux-cored arc welding (FCAW). Welding is considered one of the most energy-intensive processes in manufacturing. This study was performed in accordance with the international standard ISO 14040/14044 by using attributional life cycle assessment (aLCA).

Methods

The functional unit is defined as the “the development of 1 metre of welding seam (qualified by ASME section IX requirements) to join 25 millimetres thick of metal plates made in carbon steel material and considering a V-bevel configuration.” Different configurations of base/filler materials and standardized bevel geometries have been analyzed as welding scenarios. The inventory considers all inputs (e.g., electric energy and filler material) and outputs (e.g., fume emissions and slags) involved in each welding process. A framework for data collection starting from available project documentation is presented as an innovative solution for the inventory phase. The impact assessment includes the human health, resources (midpoints/endpoint), and ecosystems (endpoint) categories from the ReCiPe (H) and cumulative energy demand (CED) methods.

Results and discussion

This study reveals a notable dominance in terms of the environmental burdens of GTAW and SMAW processes, as they present higher impacts in most of the impact categories. SMAW is the most energy-consuming process, and this aspect is reflected in the environmental performance. Conversely, GMAW presents the least environmental load, accounting for less than one third compared with GTAW in terms of the CED indicator and performing very well in terms of the ReCiPe endpoint indicator. Via analysis of different scenarios, the main outcomes are the following: (i) the use of V bevels significantly increases the environmental load when the metal plate thickness increases and (ii) the use of specific materials such as Inconel alloy exacerbates the environmental concerns associated with welding processes.

Conclusions

The use of project documentation allows robust analysis of welding activity. Sensitivity analysis shows how the range of values for specific parameters (e.g., volts and amps) affects each technology in a different manner. Indeed, those ranges have a limited impact on the result accuracy (up to 20%) for more automatized welding processes (e.g., GMAW, SAW, and FCAW), in which only a small number of parameters are set by the operator, and the operator skills are less influential on the quality of the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alkahla I, Pervaiz S (2017) Sustainability assessment of shielded metal arc welding (SMAW) process. IOP conference series: materials science and engineering, p 244

    Article  Google Scholar 

  • Ardente F, Beccali G, Cellura M, Lo Brano V (2005) Life cycle assessment of a solar thermal collector. Renew Energy 30(7):1031–1054

    Article  Google Scholar 

  • Baitz M (2016) Attributional life cycle assessment. In: Curran M (ed) Goal and scope definition in life cycle assessment. LCA compendium—the complete world of life cycle assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0855-3_3

    Chapter  Google Scholar 

  • Borsato M (2014) Bridging the gap between product lifecycle management and sustainability in manufacturing through ontology building. Comput Ind 65(2):258–269

    Article  Google Scholar 

  • Douglas CA, Harrison GP, Chick JP (2008) Life cycle assessment of the Seagen marine current turbine. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment

  • Favi C, Campi F, Germani M, Manieri S (2018) Using design information to create a data framework and tool for life cycle analysis of complex maritime vessels. J Clean Prod 192:887–905

    Article  Google Scholar 

  • Frischknecht R, Wyss F, Knöpfel SB, Lützkendorf T, Balouktsi M (2015) Cumulative energy demand in LCA: the energy harvested approach. Int J Life Cycle Assess 20:957–969

    Article  CAS  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: characterisation—first edition - VROM–Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer. (Retrieved from http://www.lcia-recipe.net, last accessed September 2017)

  • Goepp V, Zwolinski P, Caillaud E (2014) Design process and data models to support the design of sustainable remanufactured products. Comput Ind 65(3):480–490

    Article  Google Scholar 

  • Heile RF, Hill DC (1975) Particulate fume generation in arc welding processes. Welding Journal, American Welding Society. Fumes and gases in the welding environment. Deposition efficiency of different welding technologies (available at: http://www.esabna.com)

  • Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22:138–147

    Article  Google Scholar 

  • International Aluminium Institute (2009) Global aluminium recycling: a cornerstone of sustainable development

  • IPCC (2007) In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • ISO (2006a) 14040:2006 - Environmental management - LCA - Principles and Framework

  • ISO (2006b) 14044:2006 -Environmental management - LCA - Requirements and Guidelines

  • Jenney CL, O’Brien A (2001a) Welding handbook volume 1, welding science and technology. American Welding Society

  • Jenney CL, O’Brien A (2001b) Welding handbook, Vol. 1: welding science and technology. American Welding Society, Miami, Florida

  • Jungbluth N, Frischknecht R (2010) Implementation of life cycle impact assessment methods—chapter 2: cumulative energy demand, Ecoinvent report No. 3, Swiss Centre for LCI, Dübendorf, CH. (Retrieved from http://www.ecoinvent.org, last accessed September 2017)

  • Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014) Industry 4.0. Business Inform Syst Eng 6:239–242

    Article  Google Scholar 

  • Means P, Guggemos A (2015) Framework for life cycle assessment (LCA) based environmental decision making during the conceptual design phase for commercial buildings. Procedia Engineering 118:802–812

    Article  Google Scholar 

  • Peng H, Li T, Dong M, Shi J, Zhang H (2016) Life cycle assessment of a large-scale centrifugal compressor: a case study in China. J Clean Prod 139:810–820

    Article  Google Scholar 

  • Ruy WS, Kim HK, Cho YJ, Ko DE (2017) Implementation of welding material quantity evaluation system combined with ship design CAD system. Int J Naval Architecture Ocean Eng 9(2):219–226

    Article  Google Scholar 

  • Sangwan KS, Herrmann C, Egede P, Bhakar V, Singer J (2016) Life cycle assessment of arc welding and gas welding processes. Procedia CIRP 48:62–67

    Article  Google Scholar 

  • Schmidt Rivera XC, Orias NE, Azapagic A (2014) Life cycle environmental impacts of convenience food: Comparison of ready and home-made meals. J Clean Prod 73(15):294–309. https://doi.org/10.1016/j.jclepro.2014.01.008

    Article  CAS  Google Scholar 

  • Shrivastava A, Krones M, Pfefferkorn F (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168

    Article  Google Scholar 

  • Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2015) Life cycle assessment of welding technologies for thick metal plate welds. J Clean Prod 108:46–53

    Article  CAS  Google Scholar 

  • Sproesser G, Pittner A, Rethmeier M (2016) Increasing performance and energy efficiency of gas metal arc welding by a high power tandem process. Procedia CIRP 40:642–647

    Article  Google Scholar 

  • U.S. Energy Information Administration (2017) International energy outlook (IEO)

  • U.S. Environmental Protection Agency (EPA) (1994) Development of particulate and hazardous—emission factors for electric arc welding (AP-42, Section 12.19) revised final report, May 20, 1994 (AP-42, Section 12.19)

  • Weman K (2012) Welding processes handbook. Woodhead Publishing

  • Zhang L, Huang H, Hu D, Li B, Zhang C (2016) Greenhouse gases (GHG) emissions analysis of manufacturing of the hydraulic press slider within forging machine in China. J Clean Prod 113:565–576

    Article  CAS  Google Scholar 

  • Zheng P, Wang H, Sang Z, Zhong RY, Liu Y, Liu C, Mubarok K, Yu S, Xu X (2018) Smart manufacturing systems for industry 4.0: conceptual framework, scenarios, and future perspectives. Front Mech Eng 13(2):137–150

    Article  Google Scholar 

  • Zukauskaite A, Mickeviciene R, Karnauskaite D, Turkina L (2013) Environmental and humane health issue of welding in the shipyard. Proceedings of 17th international conference. Transport Means

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Favi.

Additional information

Responsible editor: Chris Yuan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favi, C., Campi, F. & Germani, M. Comparative life cycle assessment of metal arc welding technologies by using engineering design documentation. Int J Life Cycle Assess 24, 2140–2172 (2019). https://doi.org/10.1007/s11367-019-01621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-019-01621-x

Keywords

Navigation