Skip to main content

Advertisement

Log in

Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The development of rapid, accurate, and cost-effective methods to determine forest soil properties such as visible and near infrared (Vis-NIR) spectroscopy is important for sustainable land management. The main objective of this study was to assess the suitability of Vis-NIR spectroscopy coupled with partial least squares regression (PLSR) to determine some forest soil properties such as organic carbon (SOC), total nitrogen (TN), pH, and soil texture (sand, silt, and clay) for a representative forest area in southern Italy.

Materials and methods

Soil samples (0–20 cm depth) were collected at 267 locations, oven-dried and passed through a 2-mm sieve, and analyzed for some chemical and physical soil properties using conventional laboratory methods. Vis-NIR reflectance of each soil sample was measured in laboratory under artificial light using an ASD FieldSpec IV 350–2500 nm spectroradiometer. Partial least squares regression (PLSR) was used to develop a calibration model for SOC, TN, pH, sand, silt, and clay. Samples were split into a calibration set (187 samples) to develop the models and a validation set (80 samples) to assess the prediction accuracy of the calibration models.

Results and discussion

Results showed a good agreement between measured and predicted values with high R 2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil properties. Finally, findings confirmed that laboratory Vis–NIR spectroscopy has the potential to be a non-destructive and cost-effective tool for rapid determination of many soil properties.

Conclusions

The spectral data collected in this study could contribute to build a regional soil spectral library to be used advantageously in support to soil survey in other areas of the Calabria region (southern Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ARSSA (2003) Carta dei suoli della regione Calabria — scala 1:250000, Monografia divulgativa ARSSA – Agenzia Regionale per lo Sviluppo e per i Servizi in Agricoltura, Servizio Agropedologia, Rubbettino

  • Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spec 43:772–777

    Article  CAS  Google Scholar 

  • Barthes BG, Brunet D, Ferrer H, Chotte JL, Feller C (2006) Determination of total carbon and nitrogen content in a range of tropical soils using near infrared spectroscopy: influence of replication and sample grinding and drying. J Near Infrared Spec 14:341–348

    Article  CAS  Google Scholar 

  • Bellon-Maurel V, Fernandez-Ahumada E, Palagos B, Roger JM, McBratney A (2010) Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. Trends Anal Chem 29:1073–1081

    Article  CAS  Google Scholar 

  • Bellon-Maurel V, McBratney A (2011) Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—critical review and research perspectives. Soil Biol Biochem 43:1398–1410

    Article  CAS  Google Scholar 

  • Ben-Dor E, Irons JR, Epema GF (1999) Soil reflectance. In: “Remote Sensing for the Earth Sciences” (Rencz AN ed.). Manual of Remote Sensing, vol. 3, Wiley & Sons, New York, USA, pp 111–188

  • Ben-Dor E (2002) Quantitative remote sensing of soil properties. Adv Agron 75:173–243

    Article  CAS  Google Scholar 

  • Ben-Dor E, Banin A (1995) Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59:364–372

    Article  CAS  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle-size analyses of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Brown DJ, Shepherd KD, Walsh MG, Dewayne Mays M, Reinsch TG (2006) Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290

    Article  CAS  Google Scholar 

  • Brunet D, Barthès B, Chotte JL, Feller C (2007) Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: effects of sample grinding and set heterogeneity. Geoderma 139:106–117

    Article  CAS  Google Scholar 

  • Calcaterra D, Parise M, Dattola L (1996) Caratteristiche dell’alterazione e franosità di rocce granitoidi nel bacino del torrente Alaco (Massiccio della Serre, Calabria). Boll Soc Geol It 115:3–28

    Google Scholar 

  • Cécillon L, Cassagnec N, Czarnesd S, Grose R, Vennetierf M, Brun JJ (2009) Predicting soil quality indices with near infrared analysis in a wildfire chronosequence. Sci Total Environ 407:1200–1205

    Article  Google Scholar 

  • Chang CW, Laird DA, Mausbach MJ, Hurburgh CR Jr (2001) Near-infrared reflectance spectroscopy—principal components regression analysis of soil properties. Soil Sci Soc Am J 65:480–490

    Article  CAS  Google Scholar 

  • Clark RN (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. John Wiley & Sons, New York

    Google Scholar 

  • Conforti M, Buttafuoco G, Leone AP, Aucelli PPC, Robustelli G, Scarciglia F (2013) Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological analysis: a case study in a southern Italy area. Catena 110:44–58

    Article  CAS  Google Scholar 

  • Conforti M, Castrignanò A, Robustelli G, Scarciglia F, Stelluti M, Buttafuoco G (2015a) Laboratory-based Vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting soil organic matter content. Catena 124:60–67

    Article  CAS  Google Scholar 

  • Conforti M, Froio R, Matteucci G, Buttafuoco G (2015b) Visible and near infrared spectroscopy for predicting texture in forest soil: an application in Southern Italy. iForest 8:339–347

    Article  Google Scholar 

  • Conforti M, Lucà F, Scarciglia F, Matteucci G, Buttafuoco G (2016) Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). Catena 144:23–33

    Article  CAS  Google Scholar 

  • Conforti M, Matteucci G, Buttafuoco G (2017) Organic carbon and total nitrogen topsoil stocks, biogenetic natural reserve “Marchesale” (Calabria region, southern Italy). J Maps 13:91–99

    Article  Google Scholar 

  • Cozzolino D, Moron A (2003) The potential of near-infrared reflectance spectroscopy to analyze soil chemical and physical characteristics. J Agric Sci 140:65–71

    Article  CAS  Google Scholar 

  • Curcio D, Ciraolo G, D’Asaro F, Minacapilli M (2013) Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environ Sci 19:494–503

    Article  Google Scholar 

  • Demattê JAM, Terra FS (2014) Spectral pedology: a new perspective on evaluation of soils along pedogenetic alterations. Geoderma 217-218:190–200

    Article  Google Scholar 

  • Demattê JAM, Sousa AA, Alves MC, Nanni MR, Fiorio PR, Campos RC (2006) Determining soil water status and other soil characteristics by spectral proximal sensing. Geoderma 135:179–195

    Article  Google Scholar 

  • Dwivedi RS (2002) Spatio-temporal characterization of soil degradation. Trop Ecol 43:75–90

    Google Scholar 

  • Ehsani MR, Upadhyaya SK, Slaughter D, Shafii S, Pelletier M (1999) A NIR technique for rapid determination of soil mineral nitrogen. Precis Agric 1:217–234

    Article  Google Scholar 

  • Farifteh J, Van Der Meer F, Atzberger C, Carranza EJM (2007) Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Environ 110:59–78

    Article  Google Scholar 

  • Fernandes RBA, Barrón V, Torrent J, Fontes MPF (2004) Quantification of iron oxides in Brazilian latosols by diffuse reflectance spectroscopy. Rev Bras Ciênc Solo 28:245–257

    Article  CAS  Google Scholar 

  • Fontes MPF, Carvalho IA Jr (2005) Color attributes and mineralogical characteristics, evaluated by radiometry, of highly weathered tropical soils. Soil Sci Soc Am J 69:1162–1172

    Article  CAS  Google Scholar 

  • Ge Y, Thomasson JA, Morgan CL, Searcy SW (2007) VNIR diffuse reflectance spectroscopy for agricultural soil property determination based on regression-kriging. T ASABE 50:1081–1092

    Article  CAS  Google Scholar 

  • Gomez C, Lagacherie P, Coulouma G (2008) Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 148:141–148

    Article  CAS  Google Scholar 

  • Hill J (1994) Spectral properties of soils and the use of optical remote sensing systems for soil erosion mapping. In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. ECSC, EEC, EAEC, Brussels and Luxembourg, pp 497–526

    Chapter  Google Scholar 

  • Kinoshita R, Moebius-Clune BN, van Es HM, Hively WD, Bilgili AV (2012) Strategies for soil quality assessment using visible and near-infrared reflectance spectroscopy in a western Kenya chronosequence. Soil Sci Soc Am J 76:1779–1788

    Article  Google Scholar 

  • Konen M, Burras C, Sandor J (2003) Organic carbon, texture, and quantitative color measurement relationships for cultivated soils in north central Iowa. Soil Sci Soc Am J 67:1823–1830

    Article  CAS  Google Scholar 

  • Krishnan P, Alexander J, Butler B, Hummel J (1980) Reflectance technique for predicting soil organic matter. Soil Sci Soc Am J 44:1282–1285

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Latz K, Wesimiller RA, Van Scoyoc GE, Baumgarnder MF (1984) Characteristic variation in spectral reflectance of selected eroded Alfisols. Soil Sci Soc Am J 48:1130–1134

    Article  CAS  Google Scholar 

  • Leone AP, Viscarra-Rossel RA, Amenta P, Buondonno A (2012) Prediction of soil properties with PLSR and vis-NIR spectroscopy: application to Mediterranean soils from Southern Italy. Curr Anal Chem 8:283–299

    Article  CAS  Google Scholar 

  • Lucà F, Conforti M, Castrignanò AM, Matteucci G, Buttafuoco G (2017) Effect of calibration set size on prediction at local scale of soil carbon by Vis-NIR spectroscopy. Geoderma 288:175–183

    Article  Google Scholar 

  • Lucà F, Robustelli G, Conforti M, Fabbricatore D (2011) Geomorphological map of the Crotone Province (Calabria, South Italy). J Maps 7:375–390

    Article  Google Scholar 

  • Martens H, Naes T (1989) Multivariate Calibration. John Wiley & Sons, Chichester

    Google Scholar 

  • Næs T, Isaksson T, Fearn T, Davies T (2004) A user-friendly guide to multivariate calibration and classification, Chichester, p Reprinted with corrections. NIR Publications

  • Nanni MR, Demattê JAM (2006) Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J 70:393–407

    Article  CAS  Google Scholar 

  • Nocita M, Stevens A, Noon C, Van Wesemael B (2013) Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 199:37–42

    Article  CAS  Google Scholar 

  • Pagliai M (1997) Metodi di Analisi Fisica del Suolo (physical methods of soil analysis). Italian Ministry of Agriculture, Franco Angeli, Milan (in Italian)

    Google Scholar 

  • Palacios-Orueta A, Ustin SL (1998) Remote sensing of soil properties in the Santa Monica mountains I. Spectral analysis. Remote Sens Environ 65:170–183

    Article  Google Scholar 

  • Reeves JB, McCarty GW, Reeves VB (2001) Mid-infrared diffuse reflectance spectroscopy for the quantitative analysis of agricultural soils. J Agric Food Chem 49:766–772

    Article  CAS  Google Scholar 

  • Schoenholtz SH, Van Miegroet H, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manag 138:335–356

    Article  Google Scholar 

  • Schwanghart W, Jarmer T (2011) Linking spatial patterns of soil organic carbon to topography—a case study from south-eastern Spain. Geomorphology 126:252–263

    Article  Google Scholar 

  • Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66:988–998

    Article  CAS  Google Scholar 

  • Six J, Callewaert P, Lenders S, Degryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Sorensen LK, Dalsgaard S (2005) Determination of clay and other soil properties by near infrared spectroscopy. Soil Sci Soc Am J 69:159–167

    Article  CAS  Google Scholar 

  • Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J (2010) Visible and near infrared spectroscopy in soil Science. Adv Agron 107:163–215

    Article  CAS  Google Scholar 

  • Stevens A, Nocita M, Tóth G, Montanarella L, Van Wesemael B (2013) Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoSOne 8:e66409

    Article  CAS  Google Scholar 

  • Stevens A, Wesemael B, Vandenschrick G, Touré S, Tychon B (2006) Detection of carbon stock change in agricultural soils using spectroscopic techniques. Soil Sci Soc Am J 70:844–850

    Article  CAS  Google Scholar 

  • Telles ECC, Camargo PB, Martinelli LA, Trumbore SE, Costa ES, Santos J, Higuchi N, Oliveira RCJ (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Glob Biogeochem Cycles 17:1040

    Article  Google Scholar 

  • Tian Y, Zhang J, Yao X, Cao W, Zhu Y (2013) Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra. Geoderma 202–203:161–170

    Article  Google Scholar 

  • Udelhoven T, Emmerling C, Jarmer T (2003) Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: a feasibility study. Plant Soil 251:319–329

    Article  CAS  Google Scholar 

  • USDA (2010) Keys to soil taxonomy, 11th edit. Soil Survey Staff. USDA, Natural Resources Conservation Service, Washington, DC, p 372

    Google Scholar 

  • Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. Taylor & Francis - CRC Press, Boca Raton, p 336

    Book  Google Scholar 

  • Vendrame PRS, Marchao RL, Brunet D, Becquer T (2012) The potential of NIR spectroscopy to predict soil texture and mineralogy in Cerrado.Latosols. Eur J Soil Sci 6:743–753

    Article  Google Scholar 

  • Violante P (2000) Metodi di Analisi Chimica del Suolo (Chemical methods of soil analysis). Italian Ministry of Agriculture, Franco Angeli, Milan (in Italian)

    Google Scholar 

  • Viscarra Rossel RA (2008) ParLeS: software for chemometric analysis of spectroscopic data. Chemom Intell Lab Syst 90:72–83

    Article  CAS  Google Scholar 

  • Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75

    Article  CAS  Google Scholar 

  • Volkan Bilgili A, Van Es HM, Akbas F, Durak A, Hively WD (2010) Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semiarid area of Turkey. J Arid Environ 74:229–238

    Article  Google Scholar 

  • White K, Walden J, Drake N, Eckardt F, Settle J (1997) Mapping the iron oxide content of dune sands, Namib Sand Sea, Namibia, using Landsat Thematic Mapper data. Remote Sens Environ 62:30–39

    Article  Google Scholar 

  • Yang H, Griffiths PR, Tate JD (2003) Comparison of partial least squares regression and multi-layer neural networks for quantification of nonlinear systems and application to gas phase Fourier transform infrared spectra. Anal Chim Acta 489:125–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the projects LIFE09 ENV/IT/000078 ManFor C.BD. “Managing forests for multiple purposes: carbon, biodiversity and socio-economic wellbeing” and PONa3_00363 Infrastruttura AMICA: “Infrastruttura di Alta Tecnologia per il Monitoraggio Integrato Climatico-Ambientale.”

The authors thank the reviewers for providing constructive comments, which have contributed to the improvement of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Buttafuoco.

Additional information

Responsible editor: Jun Zhou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conforti, M., Matteucci, G. & Buttafuoco, G. Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties. J Soils Sediments 18, 1009–1019 (2018). https://doi.org/10.1007/s11368-017-1766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1766-5

Keywords

Navigation