Skip to main content
Log in

Effect of nanoparticles on crops and soil microbial communities

  • Reclamation and Management of Polluted Soils: Options and Case Studies
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Nanoparticles (NPs) have received increased attention in recent past due to their unique distinct properties. Metal-based NPs are widely used in chemical and allied sector. Most of the research is directed to study the efficiency of NPs in medicine and agriculture. The aim of this review is to explore the possible threats posed by toxicity of various NPs on plants and microbial diversity.

Materials and methods

First, major sources of NPs to the environment were analyzed. The effects of metal-based NPs on the microbiota and plants are presented in this review. The results obtained by the authors during last 12 years of research are used.

Results and discussion

The exposure of soil to nanoparticles causes a decrease in soil microbial biomass and enzymatic activity, which impacts microbial community composition including yeasts, bacteria, fungi, and biological diversity. The effects of NPs on plants result in various types of abnormalities. Nanoparticles can also pose risks to human health.

Conclusions

Increased applications of NPs pose a threat to beneficial microbial communities as well as crops and soils. Thus, it is important to explore whether NPs could compromise crop yield, soil properties, soil organisms, and functional activities of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nanoparticle on seed germination of selected crops. J Agric Sci Technol 2:815–823

    CAS  Google Scholar 

  • Andersen CP, King G, Plocher M, Storm M, Pokhrel LR, Johnson MG, Rygiewicz PT (2016) Germination and early plant development of ten plant species exposed to TiO2 and CeO2 nanoparticles. Environ Toxicol Chem 35(9):2223–2229

    Article  CAS  Google Scholar 

  • Asadishad B, Chahal S, Cianciarelli V, Zhou K, Tufenkji N (2017) Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ Sci Nano 4:907–918

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2011) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  Google Scholar 

  • Atlas RM (1984) Use of microbial diversity measurements to assess environmental stress. Current perspectives in microbial ecology. American Society of Microbiology, USA, pp 540–545

    Google Scholar 

  • BCC research (2014a) Global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes.https://www.bccresearch.com/market-research/nanotechnology/nanocomposites-market-nan021f.html?vsmaid=203

  • BCC research (2014b) Nanoparticles in biotechnology, drug development and drug delivery.https://www.bccresearch.com/market-research/biotechnology/nanoparticles-biotechnology-drug-development-drug-delivery-report-bio113b.html

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  Google Scholar 

  • Calvarro LM, de Santiago-Martín A, Gomez JQ, Gonzalez-Huecas C, Quintana JR, Vazquez A, Lafuente AL, Rodríguez Fernandez TM, Ramírez VR (2014) Biological activity in metal contaminated calcareous agricultural soils: the role of the organic matter composition and the particle size distribution. Environ Sci Pollut Res 21:6176–6187

    Article  Google Scholar 

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94:490–495

    Article  CAS  Google Scholar 

  • Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B (2016) Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10:4

    Article  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in sewage sludge cause adverse ecosystem responses under realistic field scenario. PLoS One 8:57189

    Article  Google Scholar 

  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-Garcia J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–285

    Article  CAS  Google Scholar 

  • Concha-Guerrero SI, Brito EMS, Piñón-Castillo HA et al (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:13

    Article  Google Scholar 

  • Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernández-Cruz ML (2016) Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 551-552:334–343

    Article  CAS  Google Scholar 

  • Cvjetko P, Milošić A, Domijan AM, Vinković Vrček I, Tolić S, Peharec Štefanić P, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28

    Article  CAS  Google Scholar 

  • Drexler KE (1986) Engines of creation: the coming era of nanotechnology. Anchor Books Edition, USA

    Google Scholar 

  • Du WC, Gardea-Torresdey JL, Ji R, Yin Y, Zhu JG, Peralta-Videa JR, Guo HY (2015) Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: a life cycle field study. Environ Sci Technol 49:11884–11893

    Article  CAS  Google Scholar 

  • Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Ma X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3:114–126

    Article  CAS  Google Scholar 

  • Ebrahimi A, Galavi M, Ramroudi M, Moaveni P (2016) Effect of TiO2 nanoparticles on antioxidant enzymes activity and biochemical biomarkers in Pinto Bean (Phaseolus vulgaris L.) J Mol Biol Mol 6(1):58–66

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103(3):626–631

    Article  CAS  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14:75–83

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:84441

    Article  Google Scholar 

  • Garcia-Sanchez М, Garcia-Romera I, Cajthaml T, Tlusto P, Szakov J (2015) Changes in soil microbial community functionality and structure in a metal-polluted site: the effect of digestate and fly ash applications. J Environ Manag 162:63–73

    Article  CAS  Google Scholar 

  • Ge YG, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415

    Article  CAS  Google Scholar 

  • Hansen SF, Heggelund RL, Besora PR, Mackevica A, Boldrin A, Baun A (2016) Nanoproducts: what is actually available to European consumers? Environ Sci Nano 3:169–180

    Article  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, GardeaTorresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impact 17:177–185

    Article  CAS  Google Scholar 

  • Jain R, Matassa S, Singh S, van Hullebusch ED, Esposito G, Lens PN (2016) Reduction of selenite to elemental selenium nanoparticles by activated sludge. Environ Sci Pollut Res Int 23(2):1193–1202

    Article  CAS  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Jiling C, Youzhi F, Xiangui L, Junhua W (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10

    Google Scholar 

  • Josko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537

    Article  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Sizedependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol Vitro 23:1116–1122

    Article  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:482–1484

    CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2012) Influence of a nanoparticle mixture on an arctic soil community. Environ Toxicol Chem 31:131–135

    Article  CAS  Google Scholar 

  • Lakshmi JV, Sharath R, Chandraprabha MN, Neelufar E, Abhishikta H, Malyasree P (2012) Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. J Biochem Technol 3:S151–S154

    Google Scholar 

  • Lalau CM, Mohedano RA, Schmidt ÉC, Bouzon ZL, Ouriques LC, dos Santos RW, da Costa CH, Vicentini DS, Matias WG (2015) Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma 252(1):221–229

    Article  CAS  Google Scholar 

  • Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  Google Scholar 

  • Li Q, Chen X, Zhuang J, Chen X (2016) Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23(12):11533–11548

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Lofts S, Criel P, Janssen CR, Lock K, McGrath SP, Oorts K, Rooney CP, Smolders E, Spurgeon DJ, Svendsen C, Eeckhout HV, Zhao FZ (2013) Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. Environ Pollut 178:244–253

    Article  CAS  Google Scholar 

  • Lopez-Moreno ML, Aviles LL, Perez NG, Irizarry BA, Perales O, Cedeno-Mattei Y, Roman F (2016) Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52

    Article  CAS  Google Scholar 

  • Maliszewska I (2016) Effects of the biogenic gold nanoparticles on microbial community structure and activities. Ann Microbiol 66:785–794

    Article  Google Scholar 

  • Maurer-Jones MA, Ian L, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049

    Article  CAS  Google Scholar 

  • McGee CF, Storey S, Clipson N, Doyle E (2017) Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles. Ecotoxicology:1–10

  • McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    Article  CAS  Google Scholar 

  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041

    Article  CAS  Google Scholar 

  • Moon YS, Park ES, Kim TO, Lee HS, Lee SE (2014) SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environ Toxicol Phar 38(3):922–931

    Article  CAS  Google Scholar 

  • Nair PG, Chung I (2014) A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Element Res 162:342–352

    Article  CAS  Google Scholar 

  • Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Article  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.) Ecotoxicol Environ Saf 113:302–313

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  Google Scholar 

  • Olkhovych O, Volkogon M, Taran N, Batsmanova L, Kravchenko I (2016) The effect of copper and zinc nanoparticles on the growth parameters, contents of ascorbic acid, and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. (Araceae). Nanoscale ResLett 11:–218

  • Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–119

    CAS  Google Scholar 

  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125

    Article  CAS  Google Scholar 

  • Pradhan A, Seena S, Pascoal C, Cássio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol 62:58–68

    Article  CAS  Google Scholar 

  • Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Goggi SA, Gardea-Torresdey JL, Holden PA (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768

    Article  CAS  Google Scholar 

  • Saha N, Dutta GS (2017) Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater 330:18–28

    Article  CAS  Google Scholar 

  • Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2:3

    Article  Google Scholar 

  • Sanchez-Quiles D, Tovar-Sanchez A (2014) Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ Sci Technol 48(16):9037–9042

    Article  CAS  Google Scholar 

  • Servin AD, De la Torre-Roche R, Castillo-Michel H, Pagano L, Hawthorne J, Musante C, Pignatello J, Uchimiya M, White JC (2017) Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiol Biochem 110:147–157

    Article  CAS  Google Scholar 

  • Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9(2):024001

    Article  Google Scholar 

  • Shandilya N, Le BO, Bressot C, Morgeneyer M (2015) Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather. Environ Sci Technol 49(4):2163–2170

    Article  CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47

  • Shin YJ, Kwak JI, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529

    Article  CAS  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Poll Res 22:13710–13723

    Article  CAS  Google Scholar 

  • Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol 97:548–553

    Article  CAS  Google Scholar 

  • Solanki A, John DK, Ki-Bum L (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578

    Article  CAS  Google Scholar 

  • Soni D, Naoghare PK, Saravanadevi S, Pandey RA (2015) Release, transport and toxicity of engineered nanoparticles. Rev Environ Contam Toxicol 234:1–47

    CAS  Google Scholar 

  • Subbaiah LV, Prasad TN, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016) Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.) J Agric Food Chem 64:3778–3788

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nano 5:463–474

    CAS  Google Scholar 

  • Taniguchi N (1974) On the Basic Concept of Nanotechnology. Proceedings of the International Conferenceon Production Engineering, Tokyo, pp 18-23

  • Taylor AF, Rylott EL, Anderson C, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):93793

    Article  Google Scholar 

  • Tiede K, Boxall A, Tear S, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 7:795–821

    Article  Google Scholar 

  • Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall AB (2016) How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10(1):102–110

    CAS  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  Google Scholar 

  • Tourinho PS, van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  Google Scholar 

  • Tripathi S, Champagne D, Tufenkji N (2012) Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Environ Sci Technol 46(13):6942–6949

    Article  CAS  Google Scholar 

  • Trujillo-Reyes J, Peralta-Videa J, Majumdar S, Botez C, Gardea-Torresdey J (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263

    Article  CAS  Google Scholar 

  • Van NL, Ma C, Shang J, Rui Y, Liu S, Xing B (2016a) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  Google Scholar 

  • Van NL, Rui Y, Cao W, Shang J, Liu S, Quang TN, Liu L (2016b) Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. J Plant Interact 11(1):108–116

    Article  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MFJ, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  CAS  Google Scholar 

  • Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148

    Article  CAS  Google Scholar 

  • Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—a soil microcosm experiment. Chemosphere 147:88–97

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. Rev Environ Contam Toxicol 230:83–110

    CAS  Google Scholar 

  • Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.) Int J Environ Res Public Health 12:15100–15109

    Article  CAS  Google Scholar 

  • Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137

    Article  CAS  Google Scholar 

  • You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2017) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments. doi:10.1007/s11368-017-1716-2

  • Zuverza-Mena N, Medina-Velo IA, Barrios AC, Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2015) Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ Sci Process 17:1783–1793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the projects of the Ministry of Education and Science of Russia, no. 5.948.2017/PP, and the Grant of President of Russia, no. MK-7285.2016.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu D. Rajput.

Additional information

Responsible editor: Maria Manuela Abreu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, V.D., Minkina, T., Sushkova, S. et al. Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18, 2179–2187 (2018). https://doi.org/10.1007/s11368-017-1793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1793-2

Keywords

Navigation