Skip to main content

Advertisement

Log in

High-throughput characterization of antibiotic resistome in soil amended with commercial organic fertilizers

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The use and abuse of antibiotics in the livestock industry are believed to have contributed to the enhancement of antibiotic resistance in agricultural settings through the application of animal manure. The use of manure-based commercial organic fertilizers (COFs) shows promise for the abatement of potential dissemination of antibiotic resistance. This study aims to assess the effects of repeated COF applications on the soil antibiotic resistome and bacterial communities and to reveal potential correlations.

Materials and methods

High-throughput quantitative PCR was used to characterize the shift of the antibiotic resistance gene (ARG) contents after repeated COF applications. Illumina sequencing was employed to investigate changes in the bacterial community composition.

Results and discussion

Applications of COFs increased the diversity and abundance of a wide spectrum of ARGs and mobile genetic elements (MGEs) in the soil. The first and second COF applications enhanced the proliferation of genes encoding resistance to beta lactam and vancomycin. Procrustes analysis and mantel test revealed that ARG profiles were significantly correlated with bacterial community composition, indicating that the microbial community composition might be a determinant of the soil resistome. Network analysis further demonstrated significant associations between ARGs and MGEs, highlighting the likelihood of the horizontal gene transfer of ARGs in the COF-amended soils.

Conclusions

COFs are vast ARG reservoirs that should be categorized as ARG contamination sources in agriculturally related environments. The application of COFs increased the diversity, abundance, and potential horizontal transfer of ARGs in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur J (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  CAS  Google Scholar 

  • Baldi E, Toselli M (2014) Mineralization dynamics of different commercial organic fertilizers from agro-industry organic waste recycling: an incubation experiment. Plant Soil Environ 60:93–99

    Article  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M-N (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–317

    Article  CAS  Google Scholar 

  • Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, Nybroe O (2012) Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Appl Environ Microbiol 78:7438–7446

    Article  CAS  Google Scholar 

  • Binh CT, Heuer H, Kaupenjohann M, Smalla K (2009) Diverse aadA gene cassettes on class 1 integrons introduced into soil via spread manure. Res Microbiol 160:427–433

    Article  CAS  Google Scholar 

  • Binh CTT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15:422–434

    Article  CAS  Google Scholar 

  • D'costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  Google Scholar 

  • Ding G-C, Radl V, Schloter-Hai B, Jechalke S, Heuer H, Smalla K, Schloter M (2014) Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS One 9:e92958

    Article  CAS  Google Scholar 

  • Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245–1253

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  Google Scholar 

  • Enright MC (2003) The evolution of a resistant pathogen–the case of MRSA. Curr Opin Pharmacol 3:474–479

    Article  CAS  Google Scholar 

  • Fang H, Wang H, Cai L, Yu Y (2014) Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environ Sci Technol 49:1095–1104

    Article  CAS  Google Scholar 

  • Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–616

    Article  CAS  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  Google Scholar 

  • Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1:191–203

    Article  CAS  Google Scholar 

  • Gou M, Hu H-W, Zhang Y-J, Wang J-T, Hayden H, Tang Y-Q, He J-Z (2018) Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Sci Total Environ 612:1300–1310

    Article  CAS  Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7:e1002158

    Article  CAS  Google Scholar 

  • Heuer H, Focks A, Lamshöft M, Smalla K, Matthies M, Spiteller M (2008) Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol Biochem 40:1892–1900

    Article  CAS  Google Scholar 

  • Hochberg YBY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B (Methodological) 57:289–300

    Article  Google Scholar 

  • Hu H, Wang JT, Jing L, Shi X, Ma Y, Chen D, He JZ (2016) Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environ Sci Technol 51:790

    Article  CAS  Google Scholar 

  • Heuer H, Solehati Q, Zimmerling U, Kleineidam K, Schloter M, Müller T, Focks A, Thiele-Bruhn S, Smalla K (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530

    Article  CAS  Google Scholar 

  • Hughner RS, McDonagh P, Prothero A, Shultz CJ, Stanton J (2007) Who are organic food consumers? A compilation and review of why people purchase organic food. J Consum Behav 6:94–110

    Article  Google Scholar 

  • Jechalke S, Focks A, Rosendahl I, Groeneweg J, Siemens J, Heuer H, Smalla K (2014) Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs. FEMS Microbiol Ecol 87:78–88

    Article  CAS  Google Scholar 

  • Jechalke S, Kopmann C, Rosendahl I, Groeneweg J, Weichelt V, Krögerrecklenfort E, Brandes N, Nordwig M, Ding G-C, Siemens J (2013) Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol 79:1704–1711

    Article  CAS  Google Scholar 

  • Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K, Tong Y, Weber T, Sommer MO, Lee SY (2017) Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. In: Nat Commun 8:ncomms15784, vol 8

    Google Scholar 

  • Joachim S (2006) Review of history and recent development of organic farming worldwide. Agric Sci China 5:169–178

    Article  Google Scholar 

  • Kala DR, Rosenani AB, Fauziah CI, Ahmad SH, Radziah O, Rosazlin A (2011) Commercial organic fertilizers and their labeling in Malaysia. Malays J Soil Sci 15:147–157

    Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PA, Graham DW (2009) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  CAS  Google Scholar 

  • Kyselková M, Kotrbová L, Bhumibhamon G, Chroňáková A, Jirout J, Vrchotová N, Schmitt H, Elhottová D (2015) Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure. Soil Biol Biochem 81:259–265

    Article  CAS  Google Scholar 

  • Lamendella R, Santo Domingo JW, Ghosh S, Martinson J, Oerther DB (2011) Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol 11:103

    Article  CAS  Google Scholar 

  • Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, Zhang T (2015) Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J 9:2490–2502

    Article  CAS  Google Scholar 

  • Li L-G, Xia Y, Zhang T (2017) Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J 11:651–662

    Article  CAS  Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR (2012) In-feed antibiotic effects on the swine intestinal microbiome. PNAS 109:1691–1696

    Article  Google Scholar 

  • Lu HJ, Ye ZQ, Zhang XL, Lin XY, Ni WZ (2011) Growth and yield responses of crops and macronutrient balance influenced by commercial organic manure used as a partial substitute for chemical fertilizers in an intensive vegetable cropping system. Phys Chem Earth 36:387–394

    Article  Google Scholar 

  • Lubelski J, Konings WN, Driessen AJ (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71:463–476

    Article  CAS  Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  Google Scholar 

  • Muurinen J, Stedtfeld R, Karkman A, Pärnänen K, Tiedje J, Virta M (2017) Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use. Environ Sci Technol 51:5989–5999

    Article  CAS  Google Scholar 

  • Nõlvak H, Truu M, Kanger K, Tampere M, Espenberg M, Loit E, Raave H, Truu J (2016) Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil. Sci Total Environ 562:678–689

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2014) vegan: community ecology package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan

  • Ouyang W-Y, Huang F-Y, Zhao Y, Li H, Su J-Q (2015) Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl Microbiol Biotechnol 99:5697–5707

    Article  CAS  Google Scholar 

  • Peng S, Wang Y, Zhou B, Lin X (2015) Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Sci Total Environ 506:279–286

    Article  CAS  Google Scholar 

  • Prazak AM, Murano EA, Mercado I, Acuff GR (2002) Antimicrobial resistance of Listeria monocytogenes isolated from various cabbage farms and packing sheds in Texas. J Food Prot 65:1796–1799

    Article  CAS  Google Scholar 

  • Qiao M, Ying G-G, Singer AC, Zhu Y-G (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172

    Article  CAS  Google Scholar 

  • Reichenbach H (2006) The genus Lysobacter. In: The prokaryotes. Springer, pp 939–957

  • Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399

    Article  Google Scholar 

  • Su J-Q, Wei B, Ou-Yang W-Y, Huang F-Y, Zhao Y, Xu H-J, Zhu Y-G (2015) Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ Sci Technol 49:7356–7363

    Article  CAS  Google Scholar 

  • Su R-F, Li X-L, Zhang WY, Fang QY, Tang YW, Tang JG (2008) Effects of commercial organic fertilizer on rice growth, yield and grain quality. Acta Agric Shanghai 24:127–130

    Google Scholar 

  • Team RC (2014) R: a language and environment for statistical computing; R Foundation for Statistical Computing:Vienna, Austria. https://www.r-project.org

  • Tien Y-C, Li B, Zhang T, Scott A, Murray R, Sabourin L, Marti R, Topp E (2017) Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Sci Total Environ 581:32–39

    Article  CAS  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. PNAS 111:15202–15207

    Article  CAS  Google Scholar 

  • Wang F-H, Qiao M, Su J-Q, Chen Z, Zhou X, Zhu Y-G (2014) High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ Sci Technol 48:9079–9085

    Article  CAS  Google Scholar 

  • Wang H, Sangwan N, Li H-Y, Su J-Q, Oyang W-Y, Zhang Z-J, Gilbert JA, Zhu Y-G, Ping F, Zhang H-L (2017) The antibiotic resistome of swine manure is significantly altered by association with the Musca domestica larvae gut microbiome. ISME J 11:100–111

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Wright MS, Peltier GL, Stepanauskas R, McArthur JV (2006) Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. FEMS Microbiol Ecol 58:293–302

    Article  CAS  Google Scholar 

  • Xie W-Y, McGrath SP, Su J-Q, Hirsch PR, Clark IM, Shen Q, Zhu Y-G, Zhao F-J (2016) Long-term impact of field applications of sewage sludge on soil antibiotic resistome. Environ Sci Technol 50:12602–12611

    Article  CAS  Google Scholar 

  • Xie WY, Yang XP, Li Q, Wu LH, Shen QR, Zhao FJ (2016b) Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Environ Pollut 219:182–190

    Article  CAS  Google Scholar 

  • Yuan H-Y, Liu P-P, Wang N, Li X-M, Zhu Y-G, Khan ST, Alkhedhairy AA, Sun G-X (2017) The influence of soil properties and geographical distance on the bacterial community compositions of paddy soils enriched on SMFC anodes. J Soils Sediments 18:517–525

    Article  CAS  Google Scholar 

  • Zhang X, Dong Y, Wang H, Shen D (2007) Structure of livestock and variation of fecal nitrogen pollution load in China. Environ Sci 28:1311–1318

    Article  CAS  Google Scholar 

  • Zhou X, Qiao M, Wang F-H, Zhu Y-G (2017) Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environ Sci Pollut Res 24:701–710

    Article  CAS  Google Scholar 

  • Zhu Y-G, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J (2017a) Microbial mass movements. Science 357:1099–1100

    Article  CAS  Google Scholar 

  • Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. PNAS 110:3435–3440

    Article  Google Scholar 

  • Zhu Y-G, Reid BJ, Meharg AA, Banwart SA, Fu B-J (2017b) Optimizing Peri-URban Ecosystems (PURE) to re-couple urban-rural symbiosis. Sci Total Environ 586:1085–1090

    Article  CAS  Google Scholar 

  • Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, Chen Y-S, Zhang T, Gillings MR, Su J-Q (2017c) Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol 2:16270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (41571130063, 21210008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Qiao.

Additional information

Responsible editor: Terrence H. Bell

Electronic Supplementary Material

ESM 1

(DOCX 5353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Qiao, M., Su, JQ. et al. High-throughput characterization of antibiotic resistome in soil amended with commercial organic fertilizers. J Soils Sediments 19, 641–651 (2019). https://doi.org/10.1007/s11368-018-2064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2064-6

Keywords

Navigation