Skip to main content
Log in

Higher-Order Level-Set Method and Its Application in Biomolecular Surfaces Construction

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

We present a general framework for a higher-order spline level-set (HLS) method and apply this to biomolecule surfaces construction. Starting from a first order energy functional, we obtain a general level set formulation of geometric partial differential equation, and provide an efficient approach to solving this partial differential equation using a C 2 spline basis. We also present a fast cubic spline interpolation algorithm based on convolution and the Z-transform, which exploits the local relationship of interpolatory cubic spline coefficients with respect to given function data values. One example of our HLS method is demonstrated, which is the construction of biomolecule surfaces (an implicit solvation interface) with their individual atomic coordinates and solvated radii as prerequisites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osher S, Fedkiw R. Level Set Method and Dynamic Implicit Surfaces. New York: Springer, 2003.

    Google Scholar 

  2. Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monographs on Applied and Computational Mathematical, Second edition, Cambridge University Press, 1999.

  3. Osher S, Sethian J. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  4. Sanner M, Olson A, Spehner J. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 1996, 38(3): 305–320.

    Article  Google Scholar 

  5. Connolly M. Analytical molecular surface calculation. J. Appl. Cryst., 1983, 16(5): 548–558.

    Article  Google Scholar 

  6. Richards F M. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng., 1997, 6: 151–176.

    Article  Google Scholar 

  7. Liang J, Edelsbrunner H, Fu P, Sudhakar P V, Subramaniam S. Analytical shape computation of macromolecules: I. molecular area and volume through Alpha shape. Proteins: Structure, Function, and Genetics, 1998, 33(1): 1–17.

    Article  Google Scholar 

  8. Cazals F, Proust F. Revisiting the description of Protein-Protein interfaces, part I: Algorithms. Research Report 5346, INRIA, 2004.

  9. Cazals F, Proust F. Revisting the description of Protein-Protein interface, part II: Experimental study. Research Report 5501, INRIA, 2005.

  10. Cazals F, Proust F, Bahadur R P, Janin J. Revisiting the Voronoi description of Protein-Protein interfaces. Protein Sci., 2006, 15(9): 2082–2092.

    Article  Google Scholar 

  11. Akkiraju N, Edelsbrunner H. Triangulating the surface of a molecule. Discr. Appl. Math., 1996, 71(1-3): 5–22.

    Article  MATH  MathSciNet  Google Scholar 

  12. Liang J, Edelsbrunner H, Fu P, Sudhakar P V, Subramaniam S. Analytical shape computation of macromolecules: II. inaccessible cavities in protein. Proteins: Structure, Function, and Genetics, 1998, 33(1): 18–29.

    Article  Google Scholar 

  13. Edelsbrunner H. Deformable smooth surface design. Discrete & Computational Geometry, 1999, 21(1): 87–115.

    Article  MATH  MathSciNet  Google Scholar 

  14. Cheng H-L, Dey T K, Edelsbrunner H, Sullivan J. Dynamic skin triangulation. Discrete & Computational Geometry, 2001, 25(4): 525–568.

    MATH  MathSciNet  Google Scholar 

  15. Bajaj C, Lee H, Merkert R, Pascucci V. NURBS based B-rep Models from Macro-molecules and their properties. In Proc. Fourth Symposium on Solid Modeling and Applications, 1997, pp.217–228.

  16. Bajaj C, Pascucci V, Shamir A, Holt R, Netravali A. Dynamic maintenance and visualization of molecular surfaces. Discrete Applied Mathematics, 2003, 127(1): 23–51.

    Article  MATH  MathSciNet  Google Scholar 

  17. Blinn J. A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1982, 1(3): 235–256.

    Article  Google Scholar 

  18. Duncan B S, Olson A J. Shape analysis of molecular surfaces. Biopolymers, 1993, 33(2): 231–238.

    Article  Google Scholar 

  19. Grant J, Pickup B. A Gaussian description of molecular shape. Journal of Phys. Chem., 1995, 99(11): 3503–3510.

    Article  Google Scholar 

  20. Zhang Y, Xu G, Bajaj C. Quality meshing of implicit solvation models of biomolecular structures. Computer Aided Geometric Design, 2006, 23(6): 510–530.

    Article  MATH  MathSciNet  Google Scholar 

  21. Baker N, Sept D, Joseph S, Holst M, Mc-Cammon J. Electrostatics of nanosystems: Application to microtubules and the ribosome. In Proc. Natl. Acad. Sci., USA, 2001, pp.10037–10041.

  22. Holst M, Saied F. Multigrid solution of the Poisson-Boltzmann equation. J. Comput. Chem., 1993, 14(1): 105–113.

    Article  Google Scholar 

  23. Bajaj C L, Xu G, Zhang Q. Smooth surface constructions via a higher-order level-set method. ICES Report 06-18, Institute for Computational and Engineering Sciences, The University of Texas at Austin, 2006.

  24. Faugeras O D, Keriven R. Variational principles, surface evolution, PDE’s, level-set methods, and the stereo problem. IEEE Trans. Image Process., 1998, 7(3): 336–344.

    Article  MATH  MathSciNet  Google Scholar 

  25. Xu G, Zhang Q. Construction of geometric partial differential equations in computational geometry. Mathematica Numerica Sinica, 2006, 28(4): 337–356.

    MathSciNet  Google Scholar 

  26. Osher S, Shu C W. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM Journal of Numerical Analysis, 1991, 28(4): 907–922.

    Article  MATH  MathSciNet  Google Scholar 

  27. Peng D, Merriman B, Osher S, Zhao H, Kang M. A PDE-based fast local level set method. Journal of Computational Physics, 1999, 155(2): 410–438.

    Article  MATH  MathSciNet  Google Scholar 

  28. Bajaj C L, Djeu P, Siddavanahalli V, Thane A. Texmol: Interactive visual exploration of large flexible multi-component molecular complexes. In Proc. the Annual IEEE Visualization Conference'04, Austin, Texas, USA, 2004, pp.243–250.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrajit L. Bajaj.

Additional information

Bajaj is supported in part by NSF of USA under Grant No. CNS-0540033 and NIH under Grant Nos. P20-RR020647, R01-EB00487, R01-GM074258, R01-GM07308. Xu and Zhang are supported by the National Natural Science Foundation of China under Grant No. 60773165 and the National Basic Research 973 Program of China under Grant No. 2004CB318000. Zhang is also supported by Beijing Educational Committee Foundation under Grant No. KM200811232009.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 80.4 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajaj, C.L., Xu, GL. & Zhang, Q. Higher-Order Level-Set Method and Its Application in Biomolecular Surfaces Construction. J. Comput. Sci. Technol. 23, 1026–1036 (2008). https://doi.org/10.1007/s11390-008-9184-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-008-9184-1

Keywords

Navigation