Skip to main content

Advertisement

Log in

Bioactive cyclobutane-containing alkaloids

  • Review
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The present review describes research on novel natural cyclobutane-containing alkaloids and synthetic compounds isolated from terrestrial and marine species. More than 210 compounds have been confirmed to show antimicrobial, antibacterial, anticancer, and other activities. Structures, origins, biosynthesis, photodimerization, and biological activities of a selection of cyclobutane-containing alkaloids and selected synthethic analogs of natural alkaloids are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Scheme 6
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Scheme 7
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Scheme 8
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62

Similar content being viewed by others

References

  1. Dembitsky VM (2005) Astonishing diversity of natural surfactants. 6. Biological active marine and terrestrial alkaloid glycosides. Lipids 40:1081–1105

    PubMed  CAS  Google Scholar 

  2. Dembitsky VM, Gloriozova T, Poroikov VV (2005) Novel antitumor agents: marine sponge alkaloids, their synthetic analogues and derivatives. Mini Rev Med Chem 5:319–336

    PubMed  CAS  Google Scholar 

  3. Dembitsky VM (2002) Bromo- and iodo-containing alkaloids from marine microorganisms and sponges. Russ J Bioorg Chem 28:196–208

    CAS  Google Scholar 

  4. Hansen TV, Stenstrom Y (2001) Naturally occurring cyclobutanes. Organic Synthesis: Theor Appl 5:1–38

    Google Scholar 

  5. Avotin’sh FM (1993) Amino acids of cyclobutane series. Usp Khim (Russia) 62:949–958

    CAS  Google Scholar 

  6. Ortuno RM, Moglioni AG, Moltrasio GY (2005) Cyclobutane biomolecules: synthetic approaches to amino acids, peptides and nucleosides. Curr Org Chem 9:237–259

    CAS  Google Scholar 

  7. Vink AA, Roza L (2001) Biological consequences of cyclobutane pyrimidine dimers. J Photochem Photobiol B 65:101–104

    PubMed  CAS  Google Scholar 

  8. Bellus D, Ernst B (1988) Cyclobutanones and cyclobutenones in nature and in synthesis. Angew Chem Int Ed Engl 27:797–827

    Google Scholar 

  9. Mehta LK, Parrick J (2000) Four-membered ring systems. Prog Heterocyc Chem 12:77–91

    CAS  Google Scholar 

  10. Roth HJ (2005) Four-membered rings. Dtsch Apoth Ztg 145:56–62

    CAS  Google Scholar 

  11. Rappoport Z, Liebman JF (eds) (2005) The chemistry of cyclobutanes, Parts 1–2. Wiley, Chichester, p 616

  12. Vikram A, Hamzehzarghani H, Kushalappa AC (2005) Volatile metabolites from the headspace of onion bulbs inoculated with postharvest pathogens as a tool for disease discrimination. Can J Plant Pathol 27:194–203

    Article  CAS  Google Scholar 

  13. Bell EA, Qureshi MY, Pryce RJ, Janzen DH, Lemke P, Clardy J (1980) 2,4-Methanoproline (2-carboxy-2,4-methanopyrrolidine) and 2,4-methanoglutamic acid (1-amino-1,3-dicarboxycyclobutane) in seeds of Ateleia herbert-smithii Pittier (Leguminosae). J Am Chem Soc 102:1409–1412

    CAS  Google Scholar 

  14. Kite GC, Ireland H (2002) Non-protein amino acids of Bocoa (Leguminosae; Papilionoideae). Phytochemistry 59:163–168

    PubMed  CAS  Google Scholar 

  15. Stevens CV, Smagghe G, Rammeloo T, De Kimpe N (2005) Insect repellent/antifeedant activity of 2,4-methanoproline and derivatives against a leaf- and seed-feeding pest insect. J Agric Food Chem 53:1945–1948

    PubMed  CAS  Google Scholar 

  16. Harrison WA, Curcumelli-Rodostamo M, Carson DF, Barclay LRC, MacLean DB (1961) Lycopodium alkaloids. X. The structure of lycopodine. Can J Chem 39:2086–2099

    CAS  Google Scholar 

  17. Miles DH, Tunsuwan K, Chittawong V, Kokpol U, Choudhary MI, Clardy J (1993) Boll weevil antifeedants from Arundo donax. Phytochemistry 34:1277–1279

    CAS  Google Scholar 

  18. Maki Y (1961) Lycopodium alkaloids. Gifu Yakka Daigaku Kiyo 11:1–8, CA 56:46334

    CAS  Google Scholar 

  19. Manske RHF, Marion L (1943) The alkaloids of Lycopodium species. III. Lycopodium annotinum L. Can J Res 21B:92–96

    CAS  Google Scholar 

  20. Manske RHF, Marion L (1947) Alkaloids of Lycopodium species. IX. Lycopodium annotinum var. acrifolium Fern. and the structure of annotinine. J Am Chem Soc 69:2126–2169

    CAS  PubMed  Google Scholar 

  21. Wiesner K, Valenta Z, Ayer WA, Bankiewicz C (1956) The structure of annotinine. Chem Ind (London): 1019

  22. Wiesner K, Valenta Z, Ayer WA, Fowler LR, Francis JE (1958) Annotinine-II: the complete structure. Tetrahedron 4:87–104

    CAS  Google Scholar 

  23. Ho TL (1969) The stereochemistry of C15 in annotinine. Tetrahedron Lett 10:1307–1308

    Google Scholar 

  24. Wiesner K, Poon L, Jirkovský I, Fishman M (1969) The total synthesis of optically active annotinine. Can J Chem 47:433–444

    CAS  Google Scholar 

  25. Wiesner K, Francis JE, Findlay JA, Valenta Z (1961) The configuration of annotinine and some rearrangements. Tetrahedron Lett 2:187–196

    Google Scholar 

  26. Knop O, MacLean DB (1952) Lycopodium alkaloids. I. Physical properties and X-ray crystallographic data of some Lycopodium alkaloids. Can J Chem 30:598–602

    CAS  Google Scholar 

  27. Ayer WA, Wichiacz M, Trifonov LS (1999) Annotinine revisited. A new entacyclo [7.3.3.01,13.02,12.05,13] pentadecane ester and other products derived from annotinine. Can J Chem 77:1514–1520

    CAS  Google Scholar 

  28. Achmatowicz O, Rodewald W (1955) Lycopodium alkaloids. II. The alkaloids of Lycopodium annotinum. Roczniki Chem (Warsaw) 29:509–530

    CAS  Google Scholar 

  29. Perry GS, MacLean DB (1956) Lycopodium alkaloids. III. Functional groups of some minor alkaloids of Lycopodium annotinum. Can J Chem 34:1189–99

    CAS  Google Scholar 

  30. Bertho A, Stoll A (1952) Lycopodium alkaloids. I. The alkaloids from Lycopodium annotinum. Chem Ber 85:663–685

    CAS  Google Scholar 

  31. Rouffiac R (1961) Alkaloids in Lycopodium phlegmaria. Comp Rend Hebdomad Sean l’Academ Sci (Paris) 253:2612–2613

    CAS  Google Scholar 

  32. Achmatowicz O, Rodewald W (1955) The alkaloids of Lycopodium selago. Bull Acad Polonia Sci Class III (Warsaw, Poland) 3:553–555

    CAS  Google Scholar 

  33. MacLean DB (1968) Lycopodium alkaloids. In: Manske RHF (eds) Alkaloids, vol. 10. Academic, London, p 306

    Google Scholar 

  34. Ma XQ, Jiang SH, Zhu DY (1998) Alkaloid patterns in Huperzia and some related genera of Lycopodiaceae Sensu Lato occurring in China and their contribution to classification. Biochem Syst Ecol 26:723–728

    CAS  Google Scholar 

  35. Leete E (1958) The biogenesis of annotinine. Tetrahedron 3:313–314

    CAS  Google Scholar 

  36. Robinson R (1955) The structural relations of Nafurnl products. Clarendon, Oxford, p 72

    Google Scholar 

  37. Koyama K, Morita H, Hirasawa Y, Yoshinaga M, Hoshino T, Obara Y, Nakahata N, Kobayashi J (2005) Lannotinidines A-G, new alkaloids from two species of Lycopodium. Tetrahedron 61:3681–3690

    CAS  Google Scholar 

  38. Hartley TG (1986) Three new species of Sarcomelicope (Rutaceae) from New Caledonia (with a new key to the species of the genus). Adansonia 8:183–189

    Google Scholar 

  39. Fokialakis N, Magiatis P, Terzis A, Tillequin F, Skaltsounis A-L (2001) Cyclomegistine, the first alkaloid with the new cyclobuta[b]quinoline ring system from Sarcomelicope megistophylla. Tetrahedron Lett 42:5323–5325

    CAS  Google Scholar 

  40. Chosson E, Verite P, Blanckaert A, Seguin E, Litaudon M, Sevenet T (2003) Non polar compounds from the bark of Sarcomelicope follicularis. Biochem Syst Ecol 31:1185–1188

    CAS  Google Scholar 

  41. Stobbe H (1919) Constitution of the truxillic acids and of truxone. Ber Dtsch Chem Ges 52B:1021–108

    CAS  Google Scholar 

  42. Stoermer R, Foerster G (1919) The truxillic acids and truxones. Ber Dtsch Chem Ges 52B:1255–1272

    CAS  Google Scholar 

  43. Stoermer R, Laage E (1921) Truxillic acids. M. Natural and artificial truxinic and truxinic acids. Ber Dtsch Chem Ges 54B:77–85

    CAS  Google Scholar 

  44. Stobbe H, Steinberger FK (1922) Light reactions of the cis- and trans-cinnamic acids. Ber Dtsch Chem Ges 55B:2225–2245

    CAS  Google Scholar 

  45. Kan RO (1966) Organic photochemistry. McGraw-Hill, New York, p 157

    Google Scholar 

  46. Natarajan A, Ramamurthy V (2005) In: Rappoport Z, Liebman JF (eds) The chemistry of cyclobutanes. Wiley, New York, pp 807–872

  47. Bassani DM (2004) The dimerization of cinnamic acid derivatives. CRC Handbook of organic photochemistry and photobiology, 2nd edn, pp 1–20

  48. Hanley AB, Russell WR, Chesson A (1993) Formation of substituted truxillic and truxinic acids in plant-cell walls—a rationale. Phytochemistry 33:957–960

    CAS  Google Scholar 

  49. Krauze-Baranowska M (2002) Truxillic and truxinic acids—occurrence in plant kingdom. Acta Poloniae Pharm Drug Res 59:403–410

    CAS  Google Scholar 

  50. Ito Y, Hosomi H, Ohba S (2000) Compelled orientational control of the solid-state photodimerization of trans-cinnamamides: dicarboxylic acid as a non-covalent linker. Tetrahedron 56:6833–6844

    CAS  Google Scholar 

  51. Hartmann R, San-Martin A, Munoz O, Breitmaier E (1990) Grahamine, an unusual tropane alkaloid from Schizanthus grahamii. Angew Chem 102:441–443

    CAS  Google Scholar 

  52. Rahman AU, Khattak KF, Nighat F, Shabbir M, Hemalal KD, Tillekeratne LM (1998) Dimeric tropane alkaloids from Erythroxylum moonii. Phytochemistry 48:377–383

    Google Scholar 

  53. Anon (1912) Coca leaves from ceylon and federated states. Bull Imperial Instit (London) 10:37–42

    Google Scholar 

  54. Moore JM, Casale JF, Klein RFX, Cooper DA, Lydon J (1994) Determination and in-depth chromatographic analyses of alkaloids in South American and greenhouse-cultivated coca leaves. J Chromatogr 659:163–175

    CAS  Google Scholar 

  55. Lurie IS, Moore JM, Kram TC, Cooper DA (1990) Isolation, identification and separation of isomeric truxillines in illicit cocaine. J Chromatogr 504:391–401

    CAS  Google Scholar 

  56. Novak M, Salemink CA, Khan I (1984) Biological activity of the alkaloids of Erythroxylum coca and Erythroxylum novogranatense. J Ethnopharmacol 10:261–274

    PubMed  CAS  Google Scholar 

  57. Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    PubMed  CAS  Google Scholar 

  58. Nehme M, Landa A, Ribas I (1977) Alkaloids of Papilionacea. LXII. Study of alkaloids of Adenocarpus complicatus (L.) Gay, subspecies Aureus (Cav.) Vicioso. An Quim (Brazil) 73:307–308

    CAS  Google Scholar 

  59. Ribas I, Talarid P (1950) Adenocarpine and santiaguine, two alkaloids from the broom of Galicia. Mon Farm Terapia (Madrid) 56:377–379

    CAS  Google Scholar 

  60. Gonzalez AG, Gonzalez EG, Cartaya LM (1953) The alkaloids of Adenocarpus foliosus. Anal Real Soc Esp Fisica Quim (Madrid) 49B:783–788

    CAS  Google Scholar 

  61. Faugeras G (1970) Alkaloids and polyphenols of legumes. XVIII. Adenocarpus mannii alkaloids. Presence of (+)-adenocarpine, isoorensine, and santiaguine in leaves. Plant Med Phytotherap (Paris) 4:9–20

    CAS  Google Scholar 

  62. Bernasconi R, Steinegger E (1970) Legume alkaloids. XX. Alkaloids of Adenocarpus mannii, a legume from Kilimanjaro. Pharm Acta Helvet 45:42–51

    PubMed  CAS  Google Scholar 

  63. Ribas I (1960) Alkaloids of species of genus Adenocarpus D.C. Rev Real Acad Ciencia. Exacts: Fisica Natura (Madrid) 54:405–414

    CAS  Google Scholar 

  64. Luces J, Dominguez J, Ribas I (1958) Alkaloids of the Papilionaceae. XXXI. The chemistry of orensine and santiaguine. Anal Real Soc Esp: Fisica Quim (Madrid) 54B:215–222

    CAS  Google Scholar 

  65. Ribas I (1963) The alkaloids of Adenocarpus species. Abhandl Deut Akad Wiss Geol Biol 4:149–157

    Google Scholar 

  66. Mendez MR, Ribas I (1958) Papilionaceous alkaloids. XXX. Alkaloids of Adenocarpus grandiflorus. Anal Real Soc Esp: Fisica Quim (Madrid) 54B:161–166

    CAS  Google Scholar 

  67. Ribas I, Rivera E (1958) Alkaloids of the Papilionaceae. XXI. Isoorensine, a new alkaloid from the Galician hairy cytisus. Anal Real Soc Esp: Fisica Quim (Madrid) 49B:707–710

    Google Scholar 

  68. Gonzalez AG, Gonzalez EG, Cartaya LM (1953) The alkaloids of Adenocarpus foliosus. Publicat Inst Quim “Alonso Barba” (Madrid) 7:232–237

    CAS  Google Scholar 

  69. Ribas I, Taladrid P (1950) Adenocarpine and santiaguine, two alkaloids from the broom of Galicia. Anal Real Soc Esp: Fisica Quim (Madrid) 46B:489–500

    CAS  Google Scholar 

  70. Fitzgerald JS, Johns SR, Lamberton JA, Redcliffe AH (1972) Alkaloids of Hovea longipes (Leguminosae): the structure of a hypotensive alkaloid. Anal Quim 68:737–742

    Google Scholar 

  71. Lamberton JA, Morton TC, Suares H (1982) Alkaloids of Hovea linearis R.Br. The isolation of Ormosia group alkaloids. Aust J Chem 35:2577–2582

    Article  CAS  Google Scholar 

  72. Taylor WC (1991) Bioactive products from plants. Chem Aust 58:56–59

    CAS  Google Scholar 

  73. O’Donovan DG, Creedon PB (1974) Biosynthesis of santiaguine in Adenocarpus foliosus. II. J Chem Soc Perkin Trans 1 22:2524–2548

    Google Scholar 

  74. Nehme M, Landa A, Ribas I (1975) Papilionaceae alkaloids. LXI. Structure of meso-santiaguine. Anal Quim 71:627–628

    CAS  Google Scholar 

  75. Chi Y, Hashimoto F, Nohara T, Nakamura M, Yoshizawa T, Yamashita M, Marubayashi N (1996) Incarvillea alkaloids and their analgesic and sedative activities. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu (Japan) 38:43–48

    Google Scholar 

  76. Nakamura M, Chi YM, Yan W-M, Yonezawa A, Nakasugi Y, Yoshizawa T, Hashimoto F, Kinjo J, Nohara T, Sakurada S (2001) Structure-antinociceptive activity studies of incarvillateine, a monoterpene alkaloid from Incarvillea sinensis. Planta Med 67:114–117

    PubMed  CAS  Google Scholar 

  77. Chi Y-C, Hashimoto F, Yan W-M, Nohara T (1997) Four monoterpene alkaloid derivatives from Incarvillea sinensis. Phytochemistry 46:763–769

    CAS  Google Scholar 

  78. Chi Y-M, Nakamura M, Zhao X-Y, Yoshizawa T, Yan W-M, Hashimoto F, Kinjo J, Nohara T (2005) A monoterpene alkaloid from Incarvillea sinensis. Chem Pharm Bull 53:1178–1179

    PubMed  CAS  Google Scholar 

  79. Beck AB, Goldspink BH, Knox JR (1979) A re-examination of the alkaloids of Lupinus cosentinii (Guss.). J Nat Prod 42:385–398

    CAS  Google Scholar 

  80. Mashkovskii MD (1944) Pharmacology of the alkaloid, thesine. Am Rev Soviet Med 2:67–69

    CAS  Google Scholar 

  81. Arendaruk AP, Proskurnina NF, Konovalova RA (1960) Alkaloids of Thesium minkwitzianum plant. Zh Obshch Khim (USSR) 30:670–676

    CAS  Google Scholar 

  82. Arendaruk AP, Skoldinov AP (1960) Cyclobutanedicarboxylic acids. I. Structure of thesinic acid. Zh Obshch Khim (USSR) 30:484–488

    CAS  Google Scholar 

  83. Soltis PA, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402:402–404

    PubMed  CAS  Google Scholar 

  84. Jaramillo MA, Manos PS (2001) Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). Am J Bot 88:706–716

    PubMed  CAS  Google Scholar 

  85. Wei K, Li W, Koike K, Chen Y, Nikaido T (2005) Nigramides A–S, dimeric amide alkaloids from the roots of Piper nigrum. J Org Chem 70:1164–1176

    PubMed  CAS  Google Scholar 

  86. Fujiwara Y, Naithou K, Miyazaki T, Hashimoto K, Mori K, Yamamoto Y (2001) Two new alkaloids, pipercyclobutanamides A and B, from Piper nigrum. Tetrahedron Lett 42:2497–2499

    CAS  Google Scholar 

  87. Lee F-P, Chen Y-C, Chen J-J, Tsai I-L, Chen I-S (2004) Cyclobutanoid amides from Piper arborescens. Helv Chim Acta 87:463–468

    CAS  Google Scholar 

  88. Maxwell A, Rampersad D (1991) A new dihydropiplartine and. piplartine dimer from Piper rugosum. J Nat Prod 54:1150–1152

    CAS  Google Scholar 

  89. Duh CY, Wu YC, Wang S K (1990) Cytotoxic pyridone alkaloids from the leaves of Piper aborescens. J Nat Prod 53:1575–1577

    PubMed  CAS  Google Scholar 

  90. Hadom H, Jungkunz R (1951) Pepper and cubebs. Pharm Acta Helv 26:25–31

    Google Scholar 

  91. Tsai I-L, Lee F-P, Wu C-C, Duh C-Y, Ishikawa T, Chen J-J, Chen Y-C, Seki H, Chen I-S (2005) New cytotoxic cyclobutanoid amides, a new furanoid lignan and anti-platelet aggregation constituents from Piper arborescens. Planta Med 71:535–542

    PubMed  CAS  Google Scholar 

  92. Dhar KL, Shah S, Prabhakar A, Sharma RL (1995) New pyrrolidinamide dimers from Piper peepuloides. Fitoterapia 66:390–392

    CAS  Google Scholar 

  93. Sharma RL, Kumari M, Kumar N, Prabhakar A (1999) New piperidinamide dimers from Piper peepuloides. Fitoterapia 70:144–147

    CAS  Google Scholar 

  94. Reddy SM, Surekha M, Reddy VK (1997) Incidence and biology of tremorgenic mycotoxins. Microb Biotechnol 66:252–261

    Google Scholar 

  95. Steyn PS (1992) Nitrogen-containing mycotoxins: tremorgenic mycotoxins. Priklad Biokhim Mikrobiol (USSR/Russia) 28:858–869

    CAS  Google Scholar 

  96. Betina V (1989) Structure-activity relationships among mycotoxins. Chem Biol Interact 71:105–146

    PubMed  CAS  Google Scholar 

  97. Cole RJ (1993) Fungal tremorgens. Priklad Biokhim Mikrobiol (Russia) 29:44–50

    CAS  Google Scholar 

  98. Steyn PS, Vleggaar R (1985) Tremorgenic mycotoxins. Prog Chem Org Nat Prod 48:1–80

    CAS  Google Scholar 

  99. Rundberget T, Skaar I, Flaoyen A (2004) The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol 90:181–188

    PubMed  CAS  Google Scholar 

  100. Hayashi H (2005) Bioactive alkaloids of fungal origin. Stud Nat Prod Chem 32:549–609

    CAS  Google Scholar 

  101. Sonjak S, Frisvad JC, Gunde-Cimerman N (2005) Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol Ecol 53:51–60

    PubMed  CAS  Google Scholar 

  102. Hayashi H (1998) Fungal metabolites with bioactivity to insects. Recent Res Develop Agric Biol Chem 2:511–525

    CAS  Google Scholar 

  103. De Jesus AE, Steyn PS, Van Heerden FR, Vleggaar R, Wessels PL, Hull WE (1983) Tremorgenic mycotoxins from Penicillium crustosum: isolation of penitrems A–F and the structure elucidation and absolute configuration of penitrem A. J Chem Soc Perkin Trans 1 8:1847–1856

    Google Scholar 

  104. De Jesus AE, Steyn PS, Van Heerden FR, Vleggaar R, Wessels PL, Hull WE (1981) Structure and biosynthesis of the penitrems A–F, six novel tremorgenic mycotoxins from Penicillium crustosum. J Chem Soc Chem Commun 6:289–291

    Google Scholar 

  105. Rundberget T, Wilkins AL (2002) Thomitrems A and E, two indole-alkaloid isoprenoids from Penicillium crustosum Thom. Phytochemistry 61:979–985

    PubMed  CAS  Google Scholar 

  106. Rundberget T, Skaar I, O’Brien O, Flaoyen A (2004) Penitrem and thomitrem formation by Penicillium crustosum. Mycopathol 157:349–357

    Google Scholar 

  107. Puschner B (2002) Mycotoxins. The veterinary clinics of North America. Small Anim Pract 32:409–419

    Google Scholar 

  108. Gonzalez MC, Lull C, Moya P, Ayala I, Primo J, Yufera EP (2003) Insecticidal activity of penitrems, including penitrem G, a new member of the family isolated from Penicillium crustosum. J Agric Food Chem 51:2156–2160

    PubMed  CAS  Google Scholar 

  109. Penn J, Biddle JR, Mantle PG, Bilton JN, Sheppard RN (1992) Pennigritrem, a naturally-occurring penitrem A analog with novel cyclization in the diterpenoid moiety. J Chem Soc Perkin Trans 1 1:23–26

    Google Scholar 

  110. Yamaguchi T, Nozawa K, Hosoe T, Nakajima S, Kawai K (1993) Indoloditerpenes related to tremorgenic mycotoxins, penitrems, from Penicillium crustosum. Phytochemistry 32:1177–1181

    CAS  Google Scholar 

  111. Laakso JA, Gloer JB, Wicklow DT, Dowd PF (1993) A new penitrem analog with antiinsectan activity from the sclerotia of Aspergillus sulphureus. J Agric Food Chem 41:973–975

    CAS  Google Scholar 

  112. Laakso JA, Gloer JB, Wicklow DT, Dowd PF (1992) Sulpinines A–C and secopenitrem B: new antiinsectan metabolites from the sclerotia of Aspergillus sulphureus. J Org Chem 57:2066–2071

    CAS  Google Scholar 

  113. Naik JT, Mantle PG, Sheppard RN, Waight ES (1995) Penitremones A–C, Penicillium metabolites containing an oxidized penitrem carbon skeleton giving insight into structure—tremorgenic relationships. J Chem Soc Perkin Trans 1(9):1121–1125

    Google Scholar 

  114. Wilson BJ, Hoekman T, Dettbarn WD (1972) Effects of a fungus tremorgenic toxin (penitrem A) on transmission in rat phrenic nerve-diaphragm preparations. Brain Res 40:540–544

    PubMed  CAS  Google Scholar 

  115. Cysewski SJ, Baetz AL, Pier AC (1975) Penitrem A intoxication of calves: blood chemical and pathologic changes. Am J Veter Res 36:53–58

    CAS  Google Scholar 

  116. Malaiyandi M, Vesonder RF, Ciegler A (1976) Large scale production, purification and a study of some spectral properties of Penitrem A. J Environ Sci Health 11:139–164

    CAS  Google Scholar 

  117. Hayes AW, Presley DB, Neville JA (1976) Acute toxicity of penitrem A in dogs. Toxicol Appl Pharm 35:311–320

    CAS  Google Scholar 

  118. Hayes AW, Phillips RD, Wallace LC (1977) Effect of penitrem A on mouse liver composition. Toxicon 15:293–300

    PubMed  CAS  Google Scholar 

  119. Hayes AW, Hood RD (1978) Effects of prenatal administration of penicillic acid and penitrem A to mice. Toxicon 16:92–96

    PubMed  CAS  Google Scholar 

  120. Cavanagh JB, Holton JL, Nolan CC, Ray DE, Naik JT, Mantle PG (1998) The effects of the tremorgenic mycotoxin penitrem A on the rat cerebellum. Veter Pathol 35:53–63

    Article  CAS  Google Scholar 

  121. Walter SL (2002) Acute penitrem A and roquefortine poisoning in a dog. Can Veter J 43:372–374

    Google Scholar 

  122. Do Tat Loi (1991) Nhung cay thuoc va vi thuoc Viet Nam (Glossary of Vietnamese medicinal plants and drugs). Publishing House for Science and Technics, Hanoi, p 165

  123. Perry LM (1980) Medicinal plants of East and Southeast Asia: attributed properties and uses. MIT Press, Cambridge, p 370

    Google Scholar 

  124. Thuy TT, Porzel A, Ripperger H, Van Sung T, Adam G (1999) Bishordeninyl terpene alkaloids from Zanthoxylum avicennae. Phytochemistry 50:903–907

    CAS  Google Scholar 

  125. Trinh TT, Tran VS, Adam G (2002) Bishordeninyl terpene alkaloids from Zanthoxylum avicennae. Tap Chi Hoa Hoc 40:41–48

    CAS  Google Scholar 

  126. Wang Y, Yong J, Wang Z (2002) Recent progress in bioactive constituents from plants of Zanthoxylum L. Zhongcaoyao 33:666–670

    CAS  Google Scholar 

  127. Zhao Y, Cui C, Cai B, Han B, Sun Q (2004) Study on the constituents with anticancer activities of alkaloids from Bauhinia variegata L. Zhongguo Yaowu Huaxue Zazhi 14:169–171

    CAS  Google Scholar 

  128. Manandhar NP (2002) Plants and people of Nepal. Timber Press, Oregon

    Google Scholar 

  129. Ibrahim MT, Fobbe R, Nolte J (2004) Chemical composition and biological studies of Egyptian Schinus molle L. and Schinus terebinthifolius raddi oils. Bull Facul Pharm (Cairo University) 42:289–296

    CAS  Google Scholar 

  130. Ishii H, Sakurada E, Furukawa T, Koseki C, Ogata K, Koseki N, Ishikawa T, Harayama T (1991) Studies on chemical constituents of rutaceous plants. 71. Photochemistry of 2-(3,4,5-trimethoxyphenyl)-4-(3,4-methylenedioxyphenyl)-4-oxo-2-butenonitrile (β-cyanochalcone): anomalous dimerization through isomerization in the solid state. Chem Pharm Bull 39:2173–2175

    CAS  Google Scholar 

  131. Stratmann K, Moore RE, Bonjouklian R, Deeter JB, Patterson GML, Shaffer S, Smith CD, Smitka TA (1994) Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphon welwitschii and Westiella intricata. Relationship to Fischer indoles and hapalinodoles. J Am Chem Soc 116:9935–9942

    CAS  Google Scholar 

  132. Botta B, Misiti D, Delle Monache G, Persichilli S, Vitali A, Botta M, Corelli F, Carmignani M (1997) A multidisciplinary research on Verbesina caracasana. Gazz Chim Ital 127:305–310

    CAS  Google Scholar 

  133. Carmignani M, Volpe AR, Delle Monache F, Botta B, Espinal R, De Bonnevaux SC, De Luca C, Botta M, Corelli F, Tafi A, Ripanti G, Delle Monache G (1999) Novel hypotensive agents from Verbesina caracasana. 6. Synthesis and pharmacology of caracasandiamide. J Med Chem 42:3116–3125

    PubMed  CAS  Google Scholar 

  134. Delle Monache G, Botts B, Delle Monache F, Espinal R, De Bonnevaux SC, De Luca C, Botta M, Corelli F, Dei D (1996) Novel hypotensive agents from Verbesina caracasana. 3. Caracasandiamide, a truxinic hypotensive agent from Verbesina caracasana. Bioorg Med Chem Lett 6:233–238

    CAS  Google Scholar 

  135. Delle Monache G, Volpe AR, Delle Monache F, Vitali A, Botta B, Espinal R, De Bonnevaux SC, De Luca C, Botta M, Corelli F, Carmignani M (1999) Novel hypotensive agents from Verbesina caracasana. 7. Further hypotensive metabolites from Verbesina caracasana. Bioorg Med Chem Lett 9:3249–3254

    PubMed  CAS  Google Scholar 

  136. Delle Monache G, Botts B, Delle Monache F, Espinal R, De Bonnevaux SC, De Luca C, Botta M, Corelli F, Carmignani M (1992) Caracasanamide, a novel hypotensive agent from Verbesina caracasana. Bioorg Med Chem Lett 25:415–418

    Google Scholar 

  137. Delle Monache G, Botts B, Delle Monache F, Espinal R, De Bonnevaux SC, De Luca C, Botta M, Corelli F, Carmignani M (1993) Novel hypotensive agents from Verbesina caracasana. 2. Synthesis and pharmacology of caracasanamide. Bioorg Med Chem 36:2956–2963

    CAS  Google Scholar 

  138. Wildman WC, Pursey BA (1968) Colchicine and related compounds. In: Manske RHF (eds) The alkaloids: chemistry and biology, vol XI. Academic, New York, pp 407–457

    Google Scholar 

  139. Marion BR (1958) Colchicine in agriculture, medicine, biology and chemistry—a review. Br Homoeopat J 47:116–119

    Google Scholar 

  140. Gardner PD, Brandon RL, Haynes GF (1957) The structures of β- and γ-lumicolchicine. ring-D elaboration products. J Am Chem Soc 79:6334–6337

    CAS  Google Scholar 

  141. Nagle A, Hur W, Gray NS (2006) Antimitotic agents of natural origin. Curr Drug Target 7:305–326

    CAS  Google Scholar 

  142. Le Hello C (1996) La Colchicine. Ann Méd Intern 147:185–211

    CAS  Google Scholar 

  143. Sullivan TP (1998) Colchicine in dermatology. J Am Acad Derm 39:993–999

    PubMed  CAS  Google Scholar 

  144. Prescott WA Jr, Johnson CE (2005) Antiinflammatory therapies for cystic fibrosis: past, present, and future. Pharmacother 25:555–573

    CAS  Google Scholar 

  145. Richaud-Patin Y, Soto-Vega E, Jakez-Ocampo J, Llorente L (2004) P-glycoprotein in autoimmune diseases. Autoimmun Rev 3:188–192

    PubMed  CAS  Google Scholar 

  146. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nature Rev Cancer 4:253–265

    CAS  Google Scholar 

  147. Chappey O, Scherrmann JM (1995) Colchicine: recent data on pharmacokinetics and clinical pharmacology. Rev Med Intern 16:782–789

    CAS  Google Scholar 

  148. Chapman OL, Smith HG (1961) The structure of α-lumicolchicine - some examples of diamagnetic shielding by the carbon-oxygen double bond. J Am Chem Soc 83:3914–3916

    CAS  Google Scholar 

  149. Alali FQ, Tawaha K, El-Elimat T, Qasaymeh R, Li C, Burgess J, Nakanishi Y, Kroll DJ, Wani MC, Oberlies NH (2006) Phytochemical studies and cytotoxicity evaluations of Colchicum tunicatum Feinbr and Colchicum hierosolymitanum Feinbr (Colchicaceae): 2 Native Jordanian meadow saffrons. Nat Prod Res 20:558–566

    PubMed  CAS  Google Scholar 

  150. Al-Mahmoud MS, Alali FQ, Tawaha K, Qasaymeh RM (2006) Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kunth (Colchicaceae): a Jordanian meadow saffron. Nat Prod Res 20:153–160

    PubMed  CAS  Google Scholar 

  151. Alali FQ, El-Elimat T, Li C, Qandil A, Alkofahi A, Tawaha K, Burgess JP, Nakanishi Y, Kroll DJ, Navarro HA, Falkinham JO, III; Wani MC, Oberlies NH (2005) New Colchicinoids from a Native Jordanian Meadow Saffron, Colchicum brachyphyllum: isolation of the first naturally occurring dextrorotatory Colchicinoid. J Nat Prod 68:173–178

    PubMed  CAS  Google Scholar 

  152. Ellington E, Bastida J, Viladomat F, Simanek V, Codina C (2003) Occurrence of colchicine derivatives in plants of the genus Androcymbium. Biochem Syst Ecol 31:715–722

    CAS  Google Scholar 

  153. Chommadov BCh, Yusupov MK, Aslanov KhA (1991) 2,10-Didemethylcolchicine, a new alkaloid from Merendera robusta. Khim Prirod Soed 1:67–71

    Google Scholar 

  154. Yusupov MK, Chommadov BCh, Aslanov KhA (1991) Homoaporphine alkaloid N-oxides from Merendera raddeana. Khim Prirod Soed 1:86–91

    Google Scholar 

  155. He H, Hu L, Liu F (1999) Chemical constituents of Colchicum autumnale. Huaxue Yanjiu Yu Yingyong 11:509–510

    CAS  Google Scholar 

  156. Popova OI, Murav’eva DA, Tolkachev ON (1991) Alkaloids from corms of Colchicum laetum. Khim Prirod Soed 5:731–732

    Google Scholar 

  157. Potesilova H, MacFarlane TD, Guenard D, Simanek V (1987) Alkaloids and phenolics of Wurmbea and Burchardia species. Phytochemistry 26:1031–1032

    CAS  Google Scholar 

  158. Turdikulov Kh, Yusupov MK, Sadykov AS (1971) Alkaloids from Colchicum kesselringii bulbs. Khim Prirod Soed 7:541

    Google Scholar 

  159. Yusupov MK, Dinh Thi BN, Aslanov KhA (1975) O-methylkreysigine from Colchicum szovitsii. Khim Prirod Soed 11:526–527

    CAS  Google Scholar 

  160. Finnie JF, Van Staden J (1991) Isolation of colchicine from Sandersonia aurantiaca and Gloriosa superba. Variation in the alkaloid levels of plants grown in vivo. J Plant Physiol 138:691–695

    CAS  Google Scholar 

  161. Potesilova H, Widermannova J, Santay F (1969) Sustances from the plants of the subfamily Wurmbaeoidease and their derivatives. LXXIII. The lumiderivatives of some colchicine alkaloids and their identification. Coll Czechoslovak Chem Commun 34:3642–3645

    CAS  Google Scholar 

  162. Santavy F (1970) Substances from the plants of the subfamily Wurmbaeoideae and their derivatives. LXXIV. Reexamination of some minor alkaloids of unknown composition isolated from Colchicum autumnale. Coll Czechoslovak Chem Commun 35:2857–2860

    CAS  Google Scholar 

  163. Thakur RS, Potesilova H, Santavy F (1975) Substances from plants of the subfamily Wurmbaeoideae and their derivatives. LXXIX. Alkaloids of the plant Gloriosa superba. Planta Med 28:201–209

    PubMed  CAS  Google Scholar 

  164. Merchant JR, Joshi V (1976) Chemical constituents of Gloriosa superba Linn. (Liliaceae). Indian J Chem 14B:908

    CAS  Google Scholar 

  165. Canonica L, Danieli B, Manitto P, Russo G, Bonati A, Bombardelli E (1969) Structure of β-lumicolchicone. Gazz Chim Ital 99:1059–1067

    CAS  Google Scholar 

  166. Dauben WG, Cox DA (1963) Photochemical transformations. XIV. Isocolchicine. J Am Chem Soc 85:2130–2134

    CAS  Google Scholar 

  167. Chapman OL, Smith HG, Barks PA (1963) Photoisomerization of isocolchicine. J Am Chem Soc 85:3171–3173

    CAS  Google Scholar 

  168. Battersby AR, Reynolds JJ (1960) Biosynthesis of colchicine. Proc Chem Soc 346–347

  169. Battersby AR, Binks R, Yeowell DA (1964) Biosynthesis of colchicine. Proc Chem Soc 86

  170. Battersby AR, Herbert RB (1964) Colchicine. Proc Chem Soc 260

  171. Battersby AR, Binks R, Reynolds JJ, Yeowell DA (1964) Alkaloid biosynthesis. VI. The biosynthesis of colchicine. J Chem Soc 4257–4268

  172. Leete E, Nemeth PE (1960) The biogenesis of the alkaloids of Colchicum. I. The Incorporation of phenylalanine into colchicine. J Am Chem Soc 82:6055–6057

    CAS  Google Scholar 

  173. Leete E, Nemeth PE (1961) The biogenesis of the alkaloids of Colchicum. II. Tracer studies with acetate-1-C14 and methionine-methyl-C14. J Am Chem Soc 83:2192–2194

    CAS  Google Scholar 

  174. Leete E (1963) The biosynthesis of the alkaloids of Colchicum. III. The incorporation of phenylalanine-2-C14 into colchicine and demecolcine. J Am Chem Soc 85:3666–3669

    CAS  Google Scholar 

  175. Leete E (1965) Biosynthesis of the tropolone ring of colchicines. Tetrahedron Lett 6:333–336

    Google Scholar 

  176. Tashkhodzhaev B, Lindeman SV, Bessonova IA, Razakova DM, Tsapkina EN, Struchkov YuT (1988) Haplodimerine, a new dimeric quinoline alkaloid. Khim Prirod Soed 6:838–845

    Google Scholar 

  177. Snieckus VA (1975) Erythrina and related alkaloids. Alkaloids (London) 5:176–182. CA 84:59803

    CAS  Google Scholar 

  178. Bates RB, Christensen KA, Hallberg A, Klenck RE, Martin AR (1984) Solid- and liquid-phase photodimerizations of 5H-indolo[1,7-ab] [1] benzazepine. J Org Chem 49:2978–2981

    CAS  Google Scholar 

  179. Hallberg A, Isaksson R, Martin AR, Sandstroem J (1989) Chromatographic resolution, circular dichroism spectra, and absolute configurations of dimers of 5H-indolo[1,7-ab] [1] benzazepine and coumarin with C2 symmetry. J Am Chem Soc 111:4387–4392

    CAS  Google Scholar 

  180. Ashikaga K, Ito S, Yamamoto M, Nishijima Y (1987) Photodimerization of dibenz[b,f]azepine derivatives and their reaction intermediates. J Photochem 38:321–329

    CAS  Google Scholar 

  181. Querner J, Scheller D, Wolff T (2002) Conformational isomers in the photocyclodimerization of N-acylated dibenz[b,f]azepine derivatives. J Photochem Photobiol 150A:85–91

    Google Scholar 

  182. Liu T, Fischer C, Beninga C, Rohr J (2004) Oxidative rearrangement processes in the biosynthesis of gilvocarcin V. J Am Chem Soc 126:12262–12263

    PubMed  CAS  Google Scholar 

  183. McGee LR, Misra R (1990) Gilvocarcin photobiology. Isolation and characterization of the DNA photoadduct. J Am Chem Soc 112:2386–2389

    CAS  Google Scholar 

  184. Curini M, Cravotto G, Epifano F, Giannone G (2006) Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr Med Chem 13:199–222

    PubMed  CAS  Google Scholar 

  185. Gunaydin K, Savci S (2005) Phytochemical studies on Ruta chalepensis (Lam.) Lamarck. Nat Prod Res 19:203–210

    PubMed  Google Scholar 

  186. Kavli G, Volden G (1984) Phytophotodermatitis. Photodermatol 1:65–75

    PubMed  CAS  Google Scholar 

  187. Beier RC (1990) Natural pesticides and bioactive components in foods. Rev Environ Cont Toxicol 113:47–137

    CAS  Google Scholar 

  188. Cadet J, Voituriez L, Ulrich J, Joshi PC, Wang SY (1984) Isolation and characterization of the mono-heterodimers of 8-methoxypsoralen and thymidine involving the pyrone moiety. Photobiochem Photobiophys 8:35–49

    CAS  Google Scholar 

  189. Hahn BS, Joshi PC, Kan LS, Wang SY (1981) Heterodimers of psoralen and thymine derivatives: properties, structure and stereochemistry. Photobiochem Photobiophys 3:113–124

    CAS  Google Scholar 

  190. Semmler FW, Mayer EW (1912) Constituents of ethereal oils. Determination of the constitution of active caryophyllene; degradation of active caryophyllene to monocyclic derivatives. Ber Dtsch Chem Ges 44:3657–3679

    CAS  Google Scholar 

  191. Semmler FW, Mayer EW (1912) Constituents of ethereal oils. Ber Dtsch Chem Ges 45:3384–3394

    Google Scholar 

  192. Naves YR, Tullen P (1961) Essential oils. CLXXIII. Terpenes from the essential oil of lavender: ocimene, α-pinene, camphene. Helv Chim Acta 44:316–319

    CAS  Google Scholar 

  193. Mohamed MAH, Harris PJC, Henderson J (1999) An efficient in vitro regeneration protocol for Tagetes minuta. Plant Cell Tissue Organ Cult 55:211–215

    Google Scholar 

  194. Fromm E, Autin E (1914) Constituents of incense oils. Ann 401:253–262

    CAS  Google Scholar 

  195. Austin GH, Baird PD, Chow H-F, Fellows LE, Fleet GWJ, Nash RJ, Peach JM, Pryce RJ, Stirton CH (1987) Isolation from Ateleia herbert-smithii Pittier (Sophoreae, Leguminosae) and X-ray structure of cis-1-amino-3-hydroxymethyl-cyclobutane-1-carboxylic acid, an achiral non-protein amino acid. Tetrahedron 43:1857–1861

    CAS  Google Scholar 

  196. Nash RJ (1986) Studies of the chemotaxonomic and ecological significance of secondary compounds in the Leguminosae and Cycadales. Thesis, King’s College, London

  197. Marona HRN, Schenkel EP, Ortega GG, Bergenthal D (1994) Non-proteinogenic amino acids from Ateleia glazioviana Baillon. Rev Ciencias Farm (Sao Paulo) 15:183–195

    Google Scholar 

  198. Marona HRN, Ortega GG, Schenkel EP, Huet J (1996) 1-Amino-3-methylcyclobutane carboxylic acid in seeds of Ateleia glazioviana Baillon (Leguminosae). Acta Farm Bonaer (Brazil) 15:159–162

    CAS  Google Scholar 

  199. Ayer SW, Isaac BG, Luchsinger K, Makkar N, Tran M, Stonard RJ (1991) cis-2-Amino-1-hydroxycyclobutane-1-acetic acid, a herbicidal antimetabolite produced by Streptomyces rochei A13018. J Antibiot 44:1460–1462

    PubMed  CAS  Google Scholar 

  200. Pruess DL, Scannell JP, Blount JF, Ax HA, Kellett M, Williams TH, Stempel A (1974) Antimetabolites produced by microorganisms. XI. 1-(S)-hydroxy-2-(S,S)-valylamido-cyclobutane-1-acetic acid. J Antibiot 27:754–759

    PubMed  CAS  Google Scholar 

  201. Pruess D, Scannell JP (1976) Antibiotic X-1092. US Patent: 3939139 19760217; CA 85:3865, p 5

  202. Stoermer R, Laage E (1921) Truxillic acid. V. The seventh acid of the truxillic acid group, neotruxinic acid. Ber Dtsch Chem Ges 54B:96–101

    CAS  Google Scholar 

  203. Stoermer R, Bacher F (1922) Configuration of the truxinic and truxillic acids. VI. Ber Dtsch Chem Ges 55B:1860–1882

    CAS  Google Scholar 

  204. Adler P (1939) Truxillic acid nitriles and truxillic and truxinic ketones. Sitzber Abhandl Naturforsch Ges Rostock 7:3–20

    CAS  Google Scholar 

  205. Stoermer R, Schenk Fr, Pansegrau E (1927) Degradation of the truxillic and truxinic acids. XIII. Ber Dtsch Chem Ges 60B:2566–2591

    CAS  Google Scholar 

  206. Stoermer R, Lachmann H (1926) Configuration of β-truxinic acid. XII. Ber Dtsch Chem Ges 59B:642–649

    CAS  Google Scholar 

  207. Stoermer R, Scholtz F (1921) Truxillic acid. IV. The 6th acid of the truxillic acid group, ζ-truxinic acid (zetruxinic acid). Ber Dtsch Chem Ges 54B:85–96

    CAS  Google Scholar 

  208. Misonou T, Saitoh J, Oshiba S, Tokitomo Y, Maegawa M, Inoue Y, Hori H, Sakurai T (2003) UV-absorbing substance in the red alga Porphyra yezoensis (Bangiales, Rhodophyta) block thymine photodimer production. Mar Biotechnol 5:194–200

    PubMed  CAS  Google Scholar 

  209. Ishihara H (1975) Photodimerization of uracil in water. Kiyo—Nagoya-shiritsu Daigaku Kyoyobu, Shizen Kagaku-hen 21:1–14

  210. Casapullo A, Minale L, Zollo F, Lavayre J (1994) Four new dimeric peptide alkaloids, anchinopeptolides B–D, and cycloanchinopeptolide C, congeners of anchinopeptolide A, from the Mediterranean marine sponge Anchinoe tenacior. J Nat Prod 57:1227–1233

    PubMed  CAS  Google Scholar 

  211. Song F (2001) Solid-state photodimerization of 2-phenylethenyl enamides. Total synthesis of the enamide containing natural products (±)-anchinopeptolide D, (±)-cycloanchinopeptolide D, and (-)-salicylihalamide A. Brandeis University, Waltham, MA, USA. Avail. UMI, Order No. DA3004980. Dissertation 117 p, Dissertation Abstract Int 62:866

  212. Snider BB, Song F, Foxman BM (2000) Total syntheses of (±)-anchinopeptolide D and (±)-cycloanchinopeptolide D. J Org Chem 65:793–800

    PubMed  CAS  Google Scholar 

  213. Walker RP, Faulkner DJ, Van Engen D, Clardy J (1981) Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J Am Chem Soc 103:6772–6773

    CAS  Google Scholar 

  214. Faulkner DJ (1983) Sceptrin an antimicrobial agent from Agelas sceptrum. US Patent: 4370484 A 19830125, CA 98:155209, p 3

  215. Gaspar H, Gaudencio S, Medeiros MA, Teixeira A, Tavares R, Curto MJM, Devijver C, Braekman JC, Gomez R, De Kluijver M, Van Soest R (2002) Preliminary ecological studies on sponges of the genus Agelas spp. Proc Phytochem Soc Eur 47:495–498

    CAS  Google Scholar 

  216. Endo T, Tsuda M, Okada T, Mitsuhashi S, Shima H, Kikuchi K, Mikami Y, Fromont J, Kobayashi J (2004) Nagelamides A–H, new dimeric bromopyrrole alkaloids from marine sponge Agelas species. J Nat Prod 67:1262–1267

    PubMed  CAS  Google Scholar 

  217. Vassas A, Bourdy G, Paillard JJ, Lavayre J, Pais M, Quirion JC, Debitus C (1996) Naturally occurring somatostatin and vasoactive intestinal peptide inhibitors. Isolation of alkaloids from two marine sponges. Planta Med 62:28–30

    PubMed  CAS  Google Scholar 

  218. Bernan VS, Roll DM, Ireland CM, Greenstein M, Maiese WM, Steinberg DA (1993) A study on the mechanism of action of sceptrin, an antimicrobial agent isolated from the South Pacific sponge Agelas mauritiana. J Antimicrob Chemother 32:539–550

    PubMed  CAS  Google Scholar 

  219. Rosa R, Silva W, Escalona de Motta G, Rodriguez AD, Morales JJ, Ortiz M (1992) Antimuscarinic activity of a family of C11N5 compounds isolated from Agelas sponges. Experientia 48:885–887

    PubMed  CAS  Google Scholar 

  220. Keifer PA, Schwartz RE, Koker MES, Hughes RG Jr, Rittschof D, Rinehart KL (1991) Bioactive bromopyrrole metabolites from the Caribbean sponge Agelas conifera. J Org Chem 56:2965–2975

    CAS  Google Scholar 

  221. Shen X, Perry TL, Dunbar CD, Kelly-Borges M, Hamann MT (1998) Debromosceptrin, an alkaloid from the Caribbean sponge Agelas conifera. J Nat Prod 61:1302–1303

    PubMed  CAS  Google Scholar 

  222. Kobayashi J, Tsuda M, Ohizumi Y (1991) A potent actomyosin ATP-ase activator from the Okinawan marine sponge Agelas cf. nemoechinata. Experientia 47:301–304

    PubMed  CAS  Google Scholar 

  223. Hao E, Fromont J, Jardine D, Karuso P (2001) Natural products from sponges of the genus Agelas—on the trail of a [2 + 2]-photoaddition enzyme. Molecules 6:130–141

    CAS  Google Scholar 

  224. Eder C, Proksch P, Wray V, Van Soest RWM, Ferdinandus E, Pattisina LAS (1999) New bromopyrrole alkaloids from the Indopacific sponge Agelas nakamurai. J Nat Prod 62:1295–1297

    PubMed  CAS  Google Scholar 

  225. Assmann M, Kock M (2002) Bromosceptrin, an alkaloid from the marine sponge Agelas conifera. Z Naturforsch 57C:157–160

    Google Scholar 

  226. Assmann M, Lichte E, Pawlik JR, Kock M (2000) Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Mar Ecol Prog Series 207:255–262

    CAS  Google Scholar 

  227. Bickmeyer U (2005) Bromoageliferin and dibromoageliferin, secondary metabolites from the marine sponge Agelas conifera, inhibit voltage-operated, but not store-operated calcium entry in PC12 cells. Toxicon 45:627–632

    PubMed  CAS  Google Scholar 

  228. Barger G (1920) Ergot, its history and chemistry. Pharm J 105:470–473

    CAS  Google Scholar 

  229. Flieger M, Wurst M, Shelby R (1997) Ergot alkaloids-sources, structures and analytical methods. Folia Microbiol 42:3–30

    Article  CAS  Google Scholar 

  230. Van Dongen PWJ, De Groot ANJA (1995) History of Ergot Alkaloids from Ergotism to Ergometrine, Eur J Obstet. Gynaecol Reprod Biol 60:109–116

    Google Scholar 

  231. Semonsky M, Zikan V (1959) Cycloalkylamides of d-lysergic acid. GB Patent: 816273 19590708, CA 54:7424

  232. Hladovec J, Votava Z (1958) The effect of ergot alkaloids, their partial synthetic derivatives and serotonin on blood clotting. Chekhoslov Fiziol 7:553–558

    CAS  Google Scholar 

  233. Macek K, Vanecek S (1962) Ergot alkaloids. XXIV. Paper chromatography of lysergic acid cycloalkamides and N-methylergolinyl-N′-cycloalkylureas. Pharmazie 17:442–444

    CAS  Google Scholar 

  234. Votava Z, Podvalova I, Semonsky M (1957) Oxytocic effect of some d-lysergic acid cycloalkyl amides. Nature 179:474–475

    PubMed  CAS  Google Scholar 

  235. Votava Z, Podvalova I, Semonsky M (1958) Pharmacology of D-lysergic acid cycloalkylamides. Archiv Int Pharm Ther 115:114–130

    CAS  Google Scholar 

  236. Semonsky M, Zikan V (1959) Cycloalkyl- and ω-cyclopentylalkylamides of d-dihydrolysergic acid. Czech Patent: CS 92350 19591015, CA 56:18477

  237. Holzgrabe U (2005) 200 years of morphine. New developments from research. Pharmaz Z (Germany) 150:32–38

    CAS  Google Scholar 

  238. Bogusz MJ (2000) Opiate agonists. In: Bogusz, MJ (ed) Forensic Science (Handbook of analytical separations), vol. 2. Elsevier Science, Amsterdam, pp 3–65.

    Google Scholar 

  239. Stork G (1960) Morphine alkaloids. In: Manske RHF (eds) Alkaloids—chemistry and physiology, vol. 6. Academic, London, pp 219–245

    Google Scholar 

  240. Ghosh AC, Lavoie RL, Herlihy P, Howes JF, Razdan RK (1982) 14-Alkoxy dihydrocodeinones, dihydromorphinones, and morphinanones - a new class of narcotic analgesics. NIDA Res Monograph 41:105–111

    CAS  Google Scholar 

  241. Neumeyer JL, Mello NK, Stevens NS, Bidlack JM (2000) Kappa opioid agonists as targets for pharmacotherapies in cocaine abuse. Pharm Acta Helv 74:337–343

    PubMed  CAS  Google Scholar 

  242. Knoll J, Makleit S, Berenyi S, Hosztafi S, Furst Z, Knoll B, Kiss G, Gyulai B (1988) Preparation of N-alkyl-N-demethylazidoethylmorphine derivatives as pharmaceuticals. Hung. Teljes. Hungarian Patent: HU 44554 A2 19880328, CA 109:129414, p 17

  243. Banfield JE, Black DSC, Fallon GD, Gatehouse BM (1983) Constituents of Endiandra species. V. 2-[3′,5′-Dioxo-4′-phenyl-10′-{(E,E)-5″-phenylpenta-2″,4″-dien-1″-yl}-2′,4′,6′-triazatetracyclo [5,4,2,02,6,08,11]tridec-12′-en-9′-yl]acetic acid derived from Endiandra introrsa (Lauraceae). Aust J Chem 36:627–632

    Article  CAS  Google Scholar 

  244. Shimada N, Hasegawa S, Harada T, Tomisawa T, Fujii A, Takita T (1986) Oxetanocin, a novel nucleoside from bacteria. J Antibiot 39:1623–1625

    PubMed  CAS  Google Scholar 

  245. Saito S, Hasegawa S, Shimada N (1991) Oxetanocin A manufacture enhancement with Bacillus. Jpn. Kokai Tokkyo Koho, Japanese Patent: JP 03183491 A2 19910809 Heisei. CA 115:206222, p 3

  246. Clement JJ, Kern ER (1991) Cyclobutyl compounds as antiviral agents. Transplant Proceed 23 (Suppl 3):159–161

    CAS  Google Scholar 

  247. Hayashi S, Norbeck DW, Rosenbrook W, Fine RL, Matsukura M, Plattner JJ, Broder S, Mitsuya H (1990) Cyclobut-A and cyclobut-G, carbocyclic oxetanocin analogs that inhibit the replication of human immunodeficiency virus in T cells and monocytes and macrophages in vitro. Antimicrob Agents Chemother 34:287–294

    PubMed  CAS  Google Scholar 

  248. Jacobs GA, Tino JA, Zahler R (1989) Synthesis of SQ-32,829, a new nucleoside antiviral agent. Tetrahedron Lett 30:6955–6958

    CAS  Google Scholar 

  249. Chiba H, Agematu H, Kaneto R, Terasawa T, Sakai K, Dobashi K, Yoshioka T (1999) Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal activity from Rhodococcus sp. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot 52:695–699

    PubMed  CAS  Google Scholar 

  250. Roy O, Faure, Sophie; Aitken, David J (2006) A solution to the component instability problem in the preparation of peptides containing C2-substituted cis-cyclobutane β-aminoacids: synthesis of a stable rhodopeptin analog. Tetrahedron Lett 47:5981–5984

    CAS  Google Scholar 

  251. Littman L, Tokar C, Venkatraman S, Roon RJ, Koerner JF, Robinson MB, Johnson RL (1999) Cyclobutane quisqualic acid analogs as selective mGluR5a metabotropic glutamic acid receptor ligands. J Med Chem 42:1639–1647

    PubMed  CAS  Google Scholar 

  252. Gu X, Xian M, Roy-Faure S, Bolte J, Aitken DJ, Gefflaut T (2005) Synthesis of the constrained glutamate analogs (2S,1′R,2′R)- and (2S,1′S,2′S)-2-(2′-carboxycyclobutyl)glycines L-CBG-II and L-CBG-I by enzymatic transamination. Tetrahedron Lett 47:193–196

    Google Scholar 

  253. Lasa M, Lopez P, Cativiela C (2005) Synthesis of the four stereoisomers of cyclobutane analogues of phenylalanine in enantiomerically pure form. Tetrahedron Asym 16:4022–4033

    CAS  Google Scholar 

  254. Petschen I, Bosch MP, Guerrero A (2000) Enzyme-catalyzed synthesis and absolute configuration of (1S,2R,5S)- and (1R,2S,5R)-2-(1-hydroxyethyl)-1-(methoxymethyloxyethyl) cyclobutane-1-carbonitrile, key intermediates for the preparation of chiral cyclobutane-containing pheromones. Tetrahedron Asym 11:1691–1695

    CAS  Google Scholar 

  255. Izquierdo S, Kogan MJ, Parella T, Moglioni AG, Branchadell V, Giralt E, Ortuno RM (2004) 14-Helical folding in a cyclobutane-containing β-tetrapeptide. J Org Chem 69:5093–5099

    PubMed  CAS  Google Scholar 

  256. Lasa M, Lopez P, Cativiela C (2005) Synthesis of the four stereoisomers of cyclobutane analogues of phenylalanine in enantiomerically pure form. Tetrahedron: Asym 16:4022–4033

    CAS  Google Scholar 

  257. Gershonov E, Granoth R, Tzehoval E, Gaoni Y, Fridkin M (1996) 1-Aminocyclobutanecarboxylic acid derivatives as novel structural elements in bioactive peptides: application to tuftsin analogs. J Med Chem 39:4833–4843

    PubMed  CAS  Google Scholar 

  258. Allan RD, Curtis DR, Headley PM, Johnston GAR, Kennedy SME, Lodge D, Twitchin B (1980) Cyclobutane analogs of GABA. Neurochem Res 5:393–400

    PubMed  CAS  Google Scholar 

  259. Moglioni AG, Brousse BN, Alvarez-Larena A, Moltrasio GY, Ortuno RM (2002) Stereoselective synthesis of cyclobutyl GABA analogues and related compounds from (−)-(S)-verbenone. Tetrahedron Asym 13:451–454

    CAS  Google Scholar 

  260. Avenoza A, Busto JH, Canal N, Peregrina JM (2005) Synthesis of cyclobutane serine analogues. J Org Chem 70:330–333

    PubMed  CAS  Google Scholar 

  261. Kharkevich DA (1970) Pharmacology of the new antidepolarizing agents, anatruxonium, truxillonium, cyclobutonium, and pyrocyclonium. In: Kharkevich DA (ed) Novue kurarepodobnye ganglioblokiruyushchie stredstava. Meditsina, Moscow, pp 41–48

    Google Scholar 

  262. Kharkevich DA, Skoldinov AP, Arendaruk AP, Kazakova TP, Muratov VK (1974) Anatruxonium as a new curarelike agent of nondepolarizing action. Khim Farmatsev Zh (USSR) 8:59–62

    CAS  Google Scholar 

  263. Kharkevich DA (1965) Pharmacological properties of the new curaroid, anatruxonium. Farmakol Toksikol (Moscow) 28:305–309

    CAS  Google Scholar 

  264. Kosuge S, Hayashi M, Hamanaka N (1982) Synthesis of thromboxane A2 analog, DL-(9,11)-methano-(11,12)-aminothromboxane A2. Tetrahedron Lett 23:4027–4030

    CAS  Google Scholar 

  265. Chung S-K, Ban SH, Woo SH (1995) Heterocyclic lipids with PAF antagonist activities 3. Synthesis of 2,4-bis(hydroxymethyl)-oxetane and 1,3-bis(hydroxymethyl) cyclobutane derivatives. Korean J Med Chem 5:84–93

    CAS  Google Scholar 

  266. Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Ann Rev Microbiol 59:299–328

    CAS  Google Scholar 

  267. Fuerst JA (1995) The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiol 141:1493–1506

    Article  CAS  Google Scholar 

  268. Kim BS, Moon SS, Hwang BK (2000) Structure elucidation and antifungal activity of an anthracycline antibiotic, Daunomycin, isolated from Actinomadura roseola. J Agric Food Chem 48:1875–1881

    PubMed  CAS  Google Scholar 

  269. Cassinelli G, Rivola G, Ruggieri D, Arcamone F, Grein A, Merli S, Spalla C, Casazza AM, Di Marco A, Pratesi G (1982) New anthracycline glycosides: 4-O-demethyl-11-deoxydoxorubicin and analogues from Streptomyces peucetius var. aureus. J Antibiot (Tokyo) 35:176–83

    CAS  Google Scholar 

  270. Gauze GF, Sveshnikova MA, Ukholina RS, Gavrilina GN, Filicheva VA, Gladkikh EG (1973) Production of antitumor antibiotic carminomycin by Actinomadura carminata sp. nov. Antibiot (USSR) 18:675–678

    CAS  Google Scholar 

  271. Gauze GF, Terekhova LP, Maksimova TS, Ol’khovatova OL, Lavrova NV (1975) New producer of carminomycin, Actinomycer cremeospinus sp. nov. Antibiot (USSR) 20:389–393

    CAS  Google Scholar 

  272. Smith TH, Fujiwara AN, Lee WW, Wu HY, Henry DW (1977) Synthetic approaches to adriamycin. 2. Degradation of daunorubicin to a nonasymmetric tetracyclic ketone and refunctionalization of the a ring to adriamycin. J Org Chem 42:3653–3660

    PubMed  CAS  Google Scholar 

  273. Tevyashova A, Sztaricskai F, Batta G, Herczegh P, Jeney A (2004) Formation of squaric acid amides of anthracycline antibiotics. Synthesis and cytotoxic properties. Bioorg Med Chem Lett 14:4783–4789

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dembitsky, V.M. Bioactive cyclobutane-containing alkaloids. J Nat Med 62, 1–33 (2008). https://doi.org/10.1007/s11418-007-0166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-007-0166-3

Keywords

Navigation