Skip to main content

Advertisement

Log in

Plant-derived natural product research aimed at new drug discovery

  • Review
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Many important bioactive compounds have been discovered from natural sources using bioactivity-directed fractionation and isolation (BDFl) [Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441]. Continuing discovery has also been facilitated by the recent development of new bioassay methods. These bioactive compounds are mostly plant secondary metabolites, and many naturally occurring pure compounds have become medicines, dietary supplements, and other useful commercial products. Active lead compounds can also be further modified to enhance the biological profiles and developed as clinical trial candidates. In this review, the authors will summarize research on many different useful compounds isolated or developed from plants with emphasis placed on those recently discovered by the authors’ laboratories as antitumor and anti-HIV clinical trial candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lee KH, Itokawa H, Kozuka M (2005) The basis for development of high-quality dietary supplements and new medicines. In: Shi J, Ho CT, Shahidi F (eds) Asian functional foods. Marcel Dekker/CRC Press, Boca Raton, FL, pp 21–72

  2. Suffness M, Douros J (1982) Current status of the NCI plant and animal product program. J Nat Prod 45:1–14

    Google Scholar 

  3. Itokawa H (1988) Research on atineoplastic drugs from natural sources especially from higher plants. Yakugaku Zasshi 108:824–841

  4. Lee KH (1993) Antineoplastic agents and their analogues from Chinese traditional medicine. In: Kinghorn AD, Balandrin M (eds) Human medicinal agents from plants. ACS Symp Ser 534:170–190

  5. Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H (1999) Antitumor compounds isolated from higher plants. Yakugaku Zasshi 119:529–583

    Google Scholar 

  6. Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H (2000) Antitumor compounds isolated from higher plants. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier Science, Amsterdam, pp 269–350

  7. Itokawa H, Takeya K, Lee KH (2006) Anticancer compounds from higher plants. In: Fingerman M, Nagabhushanam R (eds) Biomaterials from aquatic and terrestrial organisms. Science, Enfield, NH, pp 255–283

  8. Tang W, Hemm I, Bertram B (2003) Recent development of antitumor compounds. Planta Med 69:97–108

    Google Scholar 

  9. Tang W, Hemm I, Bertram B (2003) Recent development of antitumor agents from Chinese herbal medicines. Part II: low molecular compounds. Planta Med 69:193–201

    Google Scholar 

  10. Lee KH (2004) Current developments in the discovery and design of new drug candidates from plant natural product lead. J Nat Prod 67:273–283

    Google Scholar 

  11. Mukherjee AK, Basu S, Sarker N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–1486

    Google Scholar 

  12. Cragg GM, Newman DJ (1999) Discovery and development of antineoplastic agents from natural sources. Cancer Invest 17:153–163

    Google Scholar 

  13. Cragg GM, Newman DJ (2004) A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 67:233–244

    Google Scholar 

  14. Wall ME, Wani MC (1996) Camptothecin and taxol: from discovery to clinic. J Ethnopharmacol 51:239–253

    Google Scholar 

  15. Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67:129–135

    Google Scholar 

  16. Porter P (1989) The synthesis of navelbine prototype of a new series of vinblastine derivatives. Sem Oncol 16:2–4

    Google Scholar 

  17. Jenks S, Smigel K (1996) Updates: cancer drug approved, new leukemia treatment. J Natl Cancer Inst 87:167–170

    Google Scholar 

  18. Vlahov IR, Santhapuram HKR, Kleindl PJ, Howard SJ, Stanford KM, Leamon CP (2005) Design and regioselective synthesis of a new generation of desacetylvinblastine monohydrazide. Bioorg Med Chem Lett 16:5093–5096

    Google Scholar 

  19. Okouneva T, Hill BT, Wilson L, Jordan MA (2003) The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther 2:427–436

    Google Scholar 

  20. Kruczynski A, Barret JM, Etiévant C, Colpaert F, Fahy J, Hill BT (1998) Antimitotic and tubulin-interacting properties of vinflunine, a novel fluorinated Vinca alkaloid. Biochem Pharmacol 55:635–648

    Google Scholar 

  21. Wani MC, Tayler HI, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol a novel antileukemia and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Google Scholar 

  22. Itokawa H, Lee KH (eds) (2003) Taxus: genus Taxus. Tayler & Francis, London

  23. Shigemori H, Kobayashi J (2004) Biological activity and chemistry of taxoids from the Japanese yew, Taxus cuspidata. J Nat Prod 67:245–256

    Google Scholar 

  24. Cragg GM, Suffness M (1988) Metabolism of plant-derived anticancer agents. Pharmacol Ther 37:425–461

    Google Scholar 

  25. Kingston DG (1991) The chemistry of taxol. Pharmacol Ther 52:1–34

    Google Scholar 

  26. Geney R, Chen J, Ojima I (2005) Recent advances in the new generation taxane anticancer agents. Med Chem 1:125–139

    Google Scholar 

  27. Appendino G, Betoni P, Noncovich A, Fontana G, Bombardelli E, Pera P, Bernack RJ (2004) Structure-activity relationship of ring C-secotaxoids. 1. Acylative modifications. J Nat Prod 67:184–186

    Google Scholar 

  28. Liu C, Strobl JS, Bane S, Schilling JK, McCracken M, Chatterjee SK, Rahim-Bata R, Kingston DGI (2004) Design, synthesis, and bioactivities of steroid-linked taxol analogues as potential targeted drugs for prostate and breast cancer. J Nat Prod 67:152–159

    Google Scholar 

  29. Kuznetsova L, Chen J, Sun L, Wu X, Pepe A, Veith JM, Pera P, Bemacki RJ, Ojima I (2006) Synthesis and evaluation of novel fatty acid-second genaration taxoid conjugaates as promising anticancer agents. Bioorg Med Chem Lett 16:974–977

    Google Scholar 

  30. Raez LE, Lilenbauem R (2006) New developments in chemotherapy for advanced non-small cell lung cancer. Curr Opin Oncol 18:156–161

    Google Scholar 

  31. Singer JW, Snaffer S, Baker B, Gbermarreggi A, Stromatt S, Nienstet D, Besman M (2005) Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anticancer Drugs 16:243–254

    Google Scholar 

  32. Shi Q, Wang HK, Bastow KF, Tachibana Y, Chen K, Lee FY, Lee KH (2001) Antitumor agents 210. Synthesis and evaluation of taxoid-epipodophyllotoxin conjugates as novel cytotoxic agents. Bioorg Med Chem 9:2999–3004

    Google Scholar 

  33. Ohtsu H, Nakanishi Y, Bastow KF, Lee FY, Lee KH (2003) Antitumor agents 216. Synthesis and evaluation of paclitaxel-camptothecin conjugates as novel cytotoxic agents. Bioorg Med Chem 11:1851–1857

    Google Scholar 

  34. Hennenfent KL, Govindan R (2006) Novel formulations of taxanes: a review. Old wine in a new bottle? Ann Oncol 17:735–749

    Google Scholar 

  35. Kingston DG, Newman DJ (2007) Taxoids: cancer-fighting compounds from nature. Curr Opin Drug Discov Dev 10(2):130–144

    Google Scholar 

  36. Ganesh T (2007) Improved biochemical strategies for targeted delivery of taxoids. Bioorg Med Chem 15:3597–3623

    Google Scholar 

  37. Hasegawa T, Bai J, Zhang S, Wang J, Matsubara J, Kawakami J, Tomida A, Tsuruo K, Sakai J, Kikuchi M, Abe M, Ando M (2007) Structure–activity relationships of some taxoids as multidrug resistance modulator. Bioorg Med Chem Lett 17(4):1122–1126

    Google Scholar 

  38. Hasegawa T, Bai J, Dai J, Bai L, Sakai J, Nishizawa S, Bai Y, Kikuchi M, Abe M, Yamori T, Tomida A, Tsuruo T, Hirose K, Ando M (2007) Synthesis and structure–activity relationships of taxuyunnanine C derivatives as multidrug resistance modulator in MDR cancer cells. Bioorg Med Chem Lett 17(13):3722–3728

    Google Scholar 

  39. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA (1966) Plant antitumor agents. 1. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Google Scholar 

  40. Wall ME (1993) In: Lednicer D (ed) Chronicles of drug discovery, vol 3. American Chemical Society, Washington, DC, pp 327–348

  41. Covey JM, Jaxel C, Konn KW, Pommer Y (1989) Protein-linked DNA strand breaks induced in mammalian cells by camptothecin, an inhibitor of topoisomerase I. Cancer Res 49:5016–5522

    Google Scholar 

  42. Vanhoefer U, Harstrick A, Achterrath W, Cao S, Seeber S, Rustum YM (2001) Irinotecan in treatment of colorectal cancer: clinical overview. J Clin Oncol 19:1501–1518

    Google Scholar 

  43. Wang HK, Liu SY, Hwang KM, Tayor G, Lee KH (1994) Synthesis of novel water soluble 7-(aminoacylhydrazone)-formyl camptothecins with potent inhibition of DNA topoisomerase I. Bioorg Med Chem 2:1397–1402

    Google Scholar 

  44. Bastow KF, Wang HK, Cheng YC, Lee KH (1997) Antitumor agents 173. Synthesis and evaluation of camptothecin-4β-amino-4′-O-demethyl epipodophyllotoxin conjugates as inhibitors of mammalian DNA topoisomerases and as cytotoxic agents. Bioorg Med Chem 5:1481–1488

    Google Scholar 

  45. Dallavalle S, Merlini L, Morini G, Muso L, Penco S, Beretta GL, Tinelli S, Zunino F (2004) Synthesis and cyotoxic activity of substituted 7-aryliminomethyl derivatives of camptothecin. Eur J Med Chem 39:507–513

    Google Scholar 

  46. Du W, Kaskar B, Blumbergs P, Subramanian PK, Curran DP (2003) Semisynthesis of DB-67 and other silatecans from camptothecin by thiol-promoted addition of silyl radicals. Bioorg Med Chem 11:451–458

    Google Scholar 

  47. Clark JW (2006) Rubitecan. Expert Opin Investig Drugs 15:71–79

  48. O’Leary J, Muggia FM (1998) Camptothecins: a review of their development and schedules of administration. Eur J Cancer 34:1500–1508

    Google Scholar 

  49. Garcia-Carbonero R, Supko JG (2002) Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8:641–661

    Google Scholar 

  50. Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12:1585–1604

    Google Scholar 

  51. Zhao J, Zheng X, Xing W, Huang J, Li G (2007) Electrochemical studies of camptothecin and its interaction with human serum albumin. Int J Mol Sci 8:42–50

    Google Scholar 

  52. Imbert TF (1998) Discovery of podophyllotoxins. Biochimie 80:207–222

    Google Scholar 

  53. Lee KH, Imamura Y, Haruna M, Beers SA, Thurston LS, Dai HJ, Chen CH, Liu SY, Chan YC (1989) New cytotoxic 4-alkylamino analogs of 4′-demethyl-epipodophyllotoxin as inhibitors of human DNA topoisomerase II. J Nat Prod 52:606–613

    Google Scholar 

  54. Chang JY, Han FS, Liu SY, Wang HK, Lee KH, Cheng YC (1991) Effect of 4-β-arylamino derivatives of 4′-O-demethylpodophyllotoxin on human DNA topoisomerase II, tubulin polymerization, KB cells, and their resistant variants. Cancer Res 51:1755–1759

    Google Scholar 

  55. Wang ZW, Kuo YH, Schnur D, Bowen JP, Liu SY, Han FS, Chan JY, Chen YC, Lee KH (1990) New 4-β-arylamino derivatives of 4′-O-demethylepipodophyllotoxin and related compounds as potent inhibitors of human DNA topoisomerase II. J Med Chem 33:2660–2666

    Google Scholar 

  56. Cho SJ, Trosha A, Suffness M, Chen YC, Lee KH (1996) Three dimensional quantitative structure–activity relationship study of 4′-O-demethylepipodophyllotoxin analogs using the modified CoMF/q2-GRS approach. J Med Chem 39:1383–1385

    Google Scholar 

  57. Zheng J, Wang HK, Bastow KF, Zhu XX, Cho SJ, Cheng YC, Lee KH (1997) Antitumor agents. 177. Design, synthesis, and biological evaluation of novel etoposide analogs bearing pyrrolecarboxamidino group as DNA topoisomerase II inhibitors. Bioorg Med Chem Lett 7:607–612

    Google Scholar 

  58. Zhu XK, Guan J, Tachibana Y, Bastow KF, Cho SJ, Chen HH, Cheng YC, Gurwith M, Lee KH (1999) Antitumor agents. 194. Synthesis and biological evaluation of 4β-mono-, di-, and tri-substituted aniline-4′-O-demethylpodophyllotoxin and related compounds with improved pharmacological profiles. J Med Chem 42:2441–2446

    Google Scholar 

  59. Xiao Z, Xiao YD, Feng J, Golbraikh A, Tropsha A, Lee KH (2002) Modeling of epipodophyllotoxin derivative using variable selection k nearest neighbor QSAR method. J Med Chem 45:2294–2309

    Google Scholar 

  60. Gordaliza M, Garcia PA, del Corral JMM, Castro MA, Gomez-Zunta MA (2004) Podophyllotoxin. Distribution, sources, application, and new cytotoxic derivatives. Toxicon 44:441–459

    Google Scholar 

  61. Lee KH, Xiao Z (2005) The podophyllotoxins and analogs. In: Kingston D, Cragg G, Newman D (eds) Antitumor agents from natural souces. CRC Press, Boca Raton, FL

  62. Ying QL, Liu Y, Xuan T (2007) Podophyllotoxin: current perspectives. Curr Bioactive Compds 3(1):37–66

    Google Scholar 

  63. Hang CC, Han CS, Yue XF, Snen CM, Wang SW, Wu FG, Xu B (1983) Cytotoxicity and sister chromated exchanges induced in vitro by six anticancer drugs developed in People’s Republic of China. J Natl Cancer Inst 71:841–847

    Google Scholar 

  64. Powell RG, Madrigal RV, Smith CR, Mikolajczak KL (1974) Alkaloids of Cephalotaxus harringtoniavar. drupacea. 11-Hydroxy cephalotaxine and drupacine. J Org Chem 39:676–680

  65. Powell RG, Weisleder D, Smith CR (1972) Antitumor alkaloids for Cephalotaxus harringtonia: structure and activity. J Pharm Sci 61:1227–1230

    Google Scholar 

  66. Powell RG, Weisleder D, Smith CR (1970) Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Lett 11:815–818

    Google Scholar 

  67. Spencer GF, Plattner RD, Powell RG (1976) Quantitative gas chromatography and gas chromatography–mass spectrometry of Cephalotaxus alkaloids. J Chromatogr 120:335–341

    Google Scholar 

  68. Glem JL, Cheson BD, King SA, Leyland-Jones B, Suffness M (1988) Cephalotaxine esters: antileukemic advance or therapeutic failure? J Natl Cancer Inst 80:1095–1103

    Google Scholar 

  69. Paudler WW, Kerley GI, McKay J (1963) The alkaloids of Cephalotaxus drupacea and Cephalotaxus fortunei. J Org Chem 28:2194–2197

    Google Scholar 

  70. Luo CY, Tang JY, Wang YP (2004) Homoharringtonine: a new treatment option for myeloid leukemia. Hematology 9:259–270

    Google Scholar 

  71. Kantsrjian HM, Cortes J (2006) New strategies in chronic myeloid leukemia. Int J Hematol 83:289–293

    Google Scholar 

  72. Itokawa H, Wang X, Lee KH (2004) Homoharringtonine and related compounds. In: Kingston D, Cragg G, Newman D (eds) Antitumor agents from natural sources. CRC Press, Boca Raton, FL

  73. Brossi A (ed) (1984) The alkaloids. Academic, New York, Ch 23

  74. Shi Q, Verdier-Pinard P, Brossi A, Hamel E, McPhail AT, Lee KH (1997) Antitumor agents 172. Synthesis and biological evaluation of novel deacetamidthiocolchicin-7-ols and ester analogs as antitubulin agents. J Med Chem 40:962–966

    Google Scholar 

  75. Shi Q, Brossi A, Verdier-Pinard P, Hamel E, McPhail AT, Lee KH (1998) Antitumor agents 184. Synthesis and antitubulin activity of compounds derived from reaction of thiocolchicone with amines, lactams, alcohols, and ester analogs of allothiocolchinoids. Helv Chim Acta 81:1023–1037

    Google Scholar 

  76. Guan J, Zhu XK, Tachibana Y, Bastow KF, Brossi A, Hamel E, Lee KH (1998) Antitumor agents. 185. Synthesis and biological evaluation of tridemethylthiocolchicine analogues as novel topoisomerase II inhibitors. J Med Chem 41:1956–1961

    Google Scholar 

  77. Bastow KF, Tatematsu H, Bori ID, Fukushima Y, Sun L, Goz G, Lee KH (1993) Introduction of reversible protein-linked DNA breaks in human osteogenic sarcoma cells by novel cytocidal colchicine derivatives which inhibit DNA topoisomerase II in vitro absence of cross-resistance in a colchicine-resistant sub-clone. Bioorg Med Chem Lett 3:1045–1050

    Google Scholar 

  78. Wu WL, Chang WL, Chen CF (1991) Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 14:207–216

    Google Scholar 

  79. Ryu SY, Lee CO, Choi SU (1997) In vitro cytotoxicity of tanshinones from Salvia miltiorrhiza. Planta Med 63:339–342

    Google Scholar 

  80. Sugiyama A, Zhu BM, Takahara A, Satoh Y, Hashimoto K (2002) Cardiac effects of Salvia militirrhiza/Dalbergia odorifera mixture an intravenously applicable Chinese medicine widely used for patients with ischemic heart disease in China. Circ J 66:182–184

    Google Scholar 

  81. Li HB, Chen F (2001) Preparative isolation and purification of six diterpenoids from the Chinese medicinal plant Salvia militiorrhiza by high-speed counter-current chromatography. J Chromatogr A 929:109–114

    Google Scholar 

  82. Chang J, Li M, Zhao M, Ding J, Zhang JS (2005) Novel cytotoxic secoabietane rearranged diterpenoids from Salvia prionits. Planta Med 71:361–366

    Google Scholar 

  83. Liu J, Shen HM, Ong CN (2000) Salvia miltiorrhiza inhibits cell growth and induces apoptosis in hepatoma HepG(2) cells. Cancer Lett 153:85–93

    Google Scholar 

  84. Wang X, Bastow KF, Sun CM, Lin YL, Yu HJ, Don MJ, Wu TS, Nakamura S, Lee KH (2004) Antitumor agents. 239 Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J Med Chem 47:5816–5819

    Google Scholar 

  85. Wang X, Nakagawa-Goto K, Bastow KF, Don MJ, Lin YL, Wu TS, Lee KH (2006) Antitumor agents. 254. Synthesis and biological evaluation of novel neo-tanshinlactone analogues as potent anti-breast cancer agents. J Med Chem 49:5631–5634

    Google Scholar 

  86. Wang X, Morris-Natsuke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27(1):133–148

    Google Scholar 

  87. Kupchan SM, Britton RW, Ziegler MF, Sigel CW (1973) Bruceantin, a new potent antileukemic simaroubolide from Brucea antidycenterica. J Org Chem 18:178–179

    Google Scholar 

  88. Cuendet M, Pezzuto JM (2004) Antitumor activity of bruceantin: an old drug with new promise. J Nat Prod 67:269–272

    Google Scholar 

  89. Lee KH, Imakura Y, Sumida Y, Wu RY, Hall IH, Huang HC (1979) Antitumor agents 33. Isolation and structural elucidation of bruceoside-A and -B, novel antileukemic quassinoid glycosides, and brucein-D and -E from Brucea javanica. J Org Chem 44:2180–2185

    Google Scholar 

  90. Fukamiya N, Okano M, Miyamoto M, Tagahara K, Lee KH (1992) Antitumor agents, 127. Bruceoside C, a new cytotoxic quassinoid, and related compounds from Brucea javanica. J Nat Prod 55:468–475

    Google Scholar 

  91. Ohnishi S, Fukamiya N, Okano M, Tagahara K, Lee KH (1995) Bruceosides D, E, and F, three new cytotoxic quassinoids from Brucea javanica. J Nat Prod 58:1032–1036

    Google Scholar 

  92. Lee KH (2004) Current developments in discovery and design of new drug candidates from plant natural product lead. J Nat Prod 67:273–283

    Google Scholar 

  93. Murakami C, Fukamiya N, Tamura S, Okano M, Bastow KF, Tokuda H, Mukainaka T, Nishino H, Lee KH (2004) Multidrug-resistant cancer cell susceptibility to cytotoxic quassinoids, and cancer chemopreventive effects of quassinoids and canthin alkaloids. Bioorg Med Chem 12:4963–4968

    Google Scholar 

  94. Guo Z, Vangapandu S, Sindelar RW, Walker LA, Sinclair RD (2005) Biologically active quassinoids and their chemistry: potential leads for drug design. Curr Med Chem 12:173–190

    Google Scholar 

  95. Su BN, Chang LC, Park EJ, Cuendet M, Santarsiero BD, Mesecar AD, Menta RG, Fong HHS, Pezzuto JM, Kinghorn AD (2002) Bioactive constituents of the seeds of Brucea javanica. Planta Med 68:730–733

    Google Scholar 

  96. Wu TS, Lin YM, Haruna M, Pan DJ, Shingu T, Chen YP, Hsu HY, Nakano T, Lee KH (1991) Antitumor agents, 119. Kansuiphonins A and B, two novel antileukemic diterpene esters from Euphorbia kansui. J Nat Prod 54:823–829

    Google Scholar 

  97. Pan DJ, Hu CQ, Chang JJ, Lee TTY, Chen YP, Hsu HY, McPhail DR, McPhail AT, Lee KH (1991) Kansuinonrin-C and -D, cytotoxic diterpenes from Euphorbia kansui. Phytochemistry 30:1020–1023

    Google Scholar 

  98. Nunomura S, Kitanaka S, Ra C (2006) 3-O-(2,3-Dimethylbutanoyl)-13-O-decanoylingenol from Euphorbia kansui suppresses IGE-mediated mast cell activation. Biol Pharm Bull 29:286–290

    Google Scholar 

  99. Matsumoto T, Cyong JC, Yamada H (1992) Stimulatory effects of ingenols from Euphorbia kansui on the expression of Fc receptor. Planta Med 58:255–258

    Google Scholar 

  100. Shi HM, Williams ID, Sung HHY, Zhu HX, Ip NY, Min ZD (2005) Cytotoxic deterpenoids from the roots of Euphorbia ebracteolata. Planta Med 71:349–354

    Google Scholar 

  101. Fu GM, Qin HL, Yu SS, Yu BY ((2006) Yuexiandajisu D, a novel 18-nor-rosane-type dimeric diterpenoid from Euphorbia ebracteolata Hayata. J Asian Nat Prod Res 8:29–34

  102. Duarte N, Cyemant N, Abreu PM, Molnar J, Ferreira MJU (2006) New macrocyclic lathyrane diterpenes were isolated from Euphorbia lagascae, as inhibitors of multidrug resistance of tumor cells. Planta Med 72:162–168

    Google Scholar 

  103. Hitotsutanagi Y, Lee S, Ito I, Kondo K, Takeya K, Yamagishi T, Nagate T, Itokawa H (1996) Studies on Rubia akane (RA) derivatives. Part 8. Design, syntheses and antitumor activity of cyclic hexapeptides RA analogues possessing an alkyl substituent on the Tyr-3 aromatic ring. J Chem Soc Perkin Trans 1:213–217

    Google Scholar 

  104. Hitotsuyanagi Y, Lee S, Takeya K, Itokawa H (1996) Design and synthesis of an antitumor cyclic hexapeptide Rubia akane analogue possessing an unusual amide configuration. Chem Commun 503–504

  105. Hitotsuyanagi Y, Matsumoto Y, Sasaki S, Suzuki J, Takeya K, Itokawa H (1996) Studies on Rubia akane (RA) derivatives. Part 10. Backbone transformation of RA-VII, an antitumor cyclic hexapeptide, through thionation. X-ray crystal structure of [Tyr-3-phy(CH2NH)-Ala-4]RA-VII. J Chem Soc Perkin Trans 1:1749–1755

    Google Scholar 

  106. Hitotsuyanagi Y, Anazawa Y, Yamagishi T, Samata K, Ichihara T, Nanaumi K, Pkado N, Nakaike S, Mizumura M, Takeya K, Itokawa H (1997) Novel water-soluble analogues retaining potent antitumor activity of RA-VII, a cyclic hexapeptide from Rubia plants. Bioorg Med Chem Lett 7:3125–3128

    Google Scholar 

  107. Itokawa H, Hitotsuyanagi Y, Yamagishi T (1997) Preparation of hexapeptide compounds as antitumor agents. PCT Int Appl 19970320

  108. Itokawa H, Takeya K, Mori M, Kidokoro S, Hamanaka T (1984) Studies on antitumor cyclic hexapeptides RA obtained from Rubiae Radix, Rubiaceae (IV): quantitative determination of RA-VII and RA-V in commercial Rubiae Radix and collected plants. Planta Med 51(20):313–316

    Google Scholar 

  109. Itokawa H, Morita H, Takeya K, Tomioka N, Itai A, Iitaka Y (1991) New antitumor bicyclic hexapeptides, RA-VI and -VIII from Rubia cordifolia. Conformation–activity relationship II. Tetrahedron 47:7007–7020

    Google Scholar 

  110. Morita H, Kondo K, Hitotsuyanagi Y, Takeya K, Itokawa H, Tomioka N, Itai A, Itaka Y (1991) Conformational analysis of antitumor cyclic hexapeptides RA series. Tetrahedron 47:2757–2772

    Google Scholar 

  111. Hitotsuyanagi Y, Hasuda T, Matsumoto Y, Sasaki S, Yamaguchi K, Itokawa H, Takeya K (2000) Degradation of an antitumour bicyclic hexapeptide RA-VII into cycloisodityrosines. Chem Commun 1633–1634

  112. Hitotsuyanagi Y, Matsumoto Y, Sasaki S, Yamaguchi K, Itokawa H, Takeya K (2001) A new approach to the epimeric analogue of cyclic peptides: epimerization via oxazoles of RA-VII, an anti-tumor bicyclic hexapeptide from Rubia plants. Tetrahedron Lett 42:1535–1537

    Google Scholar 

  113. Hitotsuyanagi Y, Sasaki S, Matsumoto Y, Yamaguchi K, Itokawa H, Takeya K (2003) Synthesis of [l-Ala-1]RA-VII, [d-Ala-2]RA-VII, and [A-Ala-4]RA-VII by epimerization of RA-VII, an antitumor bicyclic hexapeptide from Rubia plants, through oxazoles. J Am Chem Soc 125:7284–7290

    Google Scholar 

  114. Hitotsuyanagi Y, Hasuda T, Aihara T, Ishikawa H, Yamaguchi K, Itokawa H, Takeya K (2004) Synthesis of [Gly-1]RA-VII, [Gly-2]RA-VII, and [Gly-4]RA-VII, glycine containing analogues of RA-VII, an antitumor bicyclic hexapeptide from Rubia plants. J Org Chem 69:1481–1486

    Google Scholar 

  115. Itokawa H, Tsuruoka S, Takeya K, Mon N, Sonobe T, Kosemura S, Hamanaka T (1987) An antitumor morphinane alkaloid, sinococuline, from Coccculus trilobus. Chem Pharm Bull 35:1660–1662

    Google Scholar 

  116. Liu WK, Wang XK, Che CT (1996) Cytotoxic effects of sinococculine. Cancer Lett 99:217–224

    Google Scholar 

  117. Itokawa H, Nishimura K, Takeya K (1995) Isosinococuline, a novel antitumor morphinane alkaloid from Cocculus trilobus. Bioorg Med Chem Lett 5:821–822

    Google Scholar 

  118. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin preclinical and clinical studies. Anticancer Res 23:363–398

    Google Scholar 

  119. Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin getting back to the roots. Ann NY Acad Sci 1056:206–217

    Google Scholar 

  120. Singh S, Khar A (2005) Biological effects of curcumin in cancer chemoprevention and therapy. Anticancer Agents Med Chem 6:259–270

    Google Scholar 

  121. Ohtsu H, Xiao Z, Ishida J, Nagai M, Wang HK, Itokawa H, Su CY, Shih C, Lee Y, Tsai MY, Chang C, Lee KH (2002) Antitumor agents 217. Curcumin analogues as novel androgen receptor antagonists with potential as antiprostate cancer agents. J Med Chem 45:5037–5042

    Google Scholar 

  122. Ohtsu H, Itokawa H, Su CY, Shih C, Chiang T, Chang E, Lee YF, Chiu SY, Chang C, Lee KH (2003) Antitumor agents 222. Synthesis and anti-androgen activity of new diarylheptanoids. Bioorg Med Chem 11:5083–5090

    Google Scholar 

  123. Lin L, Shi Q, Su CY, Shih CCY, Lee KH (2006) Antitumor agents 247. New 4-ethoxycarbonyl curcumin analogs as potential antiandrogenic agents. Bioorg Med Chem 14:2527–2534

    Google Scholar 

  124. Lin L, Shi Q, Nyarko AK, Bastow KF, Wu CC, Su CY, Shih CCY, Lee KH (2006) Antitumor agents 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J Med Chem 49:3963–3972

    Google Scholar 

  125. Lin L, Lee KH (2006) Structure–activity relationships of curcumin and its analogs with different biological activities. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol. 33. Elsevier, New York, pp 785–812

  126. Itokawa H, Shirota O, Ikuta H, Morita H, Takeya K, Iitaka Y (1991) Triterpenes from rhizomes of Maytenus illicifolia. Phytochemistry 39:3713–3716

    Google Scholar 

  127. Itokawa H, Shirota O, Morita H, Takeya K, Tomioka N, Iitaka Y (1990) Triterpene dimers from Maytenus illicifolia. Tetrahedron Lett 31:6881–6882

    Google Scholar 

  128. Shirota O, Morita H, Takeya K, Itokawa H (1997) Revised structures of cangorosins, triterpene dimers from Maytenus illicifolia. J Nat Prod 60:111–115

    Google Scholar 

  129. Shirota O, Sekita S, Satake M, Morita H, Takeya K, Itokawa H (2004) Two new sesquiterpene pyridine alkaloids from Maytenus chuchuhasca. Heterocycle 63:1891–1896

    Google Scholar 

  130. Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, Gilmore CJ, Haltiwanger RC, Bryan RF (1972) Maytansine, a novel antileukemic ansa maclolide from Maytenus ovatus. J Am Chem Soc 94:1354–1356

    Google Scholar 

  131. Kupchan SM, Sneden AT, Branfman AR, Howie GA, Rebhun LI, Mclvor WE, Wang RW, Schaitmen TC (1976) Structural requirements for antileukemic activity among the naturally occurring and semisynthetic maytansinoids. J Med Chem 21:31–37

    Google Scholar 

  132. Nakao H, Senokuchi K, Umebayashi C, Kanemaru K, Masuda T, Oyama Y, Tonemori S (2004) Cytotoxic activity of maytanprine isolated from M. diversifolia in human leukemia K562 cells. Biol Pharm Bull 27:1236–1240

    Google Scholar 

  133. Kuo YH, Chen CH, Kuo LM, King ML, Wu TS, Haruna M, Lee KH (1990) Antitumor agents 112. Emarginatine B, a novel potent cytotoxic sesquiterpene pyridine alkaloid from Maytenus emarginata. J Nat Prod 53:422–428

    Google Scholar 

  134. Kuo YH, King ML, Chen CF, Chen HY, Chen K, Lee HK (1994) Two new macrolide sesquiterpene pyridine alkaloids from Maytenus emarginata: emaginatine G and the cyclotoxic emarginatine F. J Nat Prod 57:262–269

    Google Scholar 

  135. Shirota O, Sekita S, Satake M, Morita H, Takeya K, Itokawa H (2004) Nine regioisomeric and stereoisomeric triterpene dimers from Maytenus chuchuhuasca. Chem Pharm Bull 52:739–746

    Google Scholar 

  136. Ohsaki A, Imai Y, Naruse M, Ayabe S, Komiyama K, Takashima J (2004) Four new triterpenenoids from Maytenus illicifolia. J Nat Prod 67:469–471

    Google Scholar 

  137. Gonzalez AG, Tincusi BM, Bazzocchi IL, Tokuda H, Nishino H, Konoshima Y, Jimenez IA, Ravelo AG (2000) Anti-tumor promoting effects of sesquiterpenes from Maytenus cuzcoina (Celastraceae). Bioorg Med Chem 8:1773–1778

    Google Scholar 

  138. Cos P, Maes L, Berghe DV, Hermans N, Pieters L, Vlietinck A (2004) Plant substances as anti-HIV agents selected according to their putative mechanism of action. J Nat Prod 67:284–293

    Google Scholar 

  139. Lee TT, Kashiwada Y, Huang L, Sneider J, Cosentino M, Lee KH (1994) Suksdorfin: an anti-HIV principle from Lomatium suksdorfii, its structure–activity correlation with related coumarins, and synergic effects with anti-AIDS nucleosides. Bioporg Med Chem 2:1051–1056

    Google Scholar 

  140. Huang L, Kashiwada Y, Cosentino LM, Fan S, Chen CH, McPhail AT, Fujioka T, Mihashi K, Lee KH (1994) Anti-AIDS agents 15. Synthesis and anti-HIV activity of dihydroseselins and related analogs. J Med Chem 37:3947–3955

    Google Scholar 

  141. Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH (2003) Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev 23:322–345

    Google Scholar 

  142. Yu D, Chen CH, Brossi A, Lee KH (2004) Anti-AIDS agents 60. Substituted 3′R,4′R-di-O-(−)-camphanoyl-2′2′-dimethyldihydropyrano[2.3-f]chromone (DCP) analogs as potent anti-HIV agents. J Med Chem 47:4072–4082

    Google Scholar 

  143. Yu D, Lee KH (2006) Anti-AIDS agents 63. Recent progress and prospects on plant-derived anti-HIV agents and analogs. In: Liang XT, Fang WS (eds) Medicinal chemistry of bioactive natural products. Wiley, Hoboken, NJ, Chap 9, pp 357–398

  144. Kashiwada Y, Hashimoto F, Cosentino LM, Chen CH, Garren PE, Lee KH (1996) Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents. J Med Chem 39:1016–1017

    Google Scholar 

  145. Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen IS, Lee KH (1994) Anti-AIDS agents 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57:243–247

    Google Scholar 

  146. Lee KH, Kashiwada Y, Hashimoto F, Cosentino LM, Manak M (1996) Beturinic acid derivatives and antiviral use (University of North Carolina at Chapel Hill and Biotech, Research Laboratories). PCT Int Appl WO 9639033

  147. Sun IC, Kashiwada Y, Morris-Natschke SL, Lee KH (2002) Plant-derived terpenoids and analogues as anti-HIV agents. Curr Top Med Chem 3:155–169

    Google Scholar 

  148. Li F, Goila-Gaur R, Salzwedel K, Kilgore NR, Reddick M, Mataliana C, Castillo A, Zoumplis D, Martin DE, Orenstein JM, Allway FP, Freed EO, Wild CT (2003) A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100:13555–13560

    Google Scholar 

  149. Yu D, Wild CT, Martin DE, Morris-Natschke SL, Chen CH, Allway G, Lee KH (2005) Anti-AIDS agents 64. The discovery of maturation inhibitors and their potential in the therapy of HIV. Expert Opin Investig Drugs 14:681–693

    Google Scholar 

  150. Yu D, Morris-Natschke SL, Lee KH (2007) Anti-AIDS agents 67. New developments in natural products-based anti-AIDS research. Med Res Rev 27:133–148

    Google Scholar 

  151. Yu D, Morris-Natshke SL, Lee KH (2007) New developments in natural products-based anti-AIDS research. Med Res Rev 27:108–132

    Google Scholar 

  152. Huang L, Ho P, Lee KH, Chen CH (2006) Synthesis and anti-HIV activity of bi-functional betulinic acid derivatives. Bioorg Med Chem 14:2279–2289

    Google Scholar 

  153. Li Y, Huang H, Wu YL (2006) Quinghaosu (artemisinin)—a fantastic antimalarial drug from a traditional Chinese medicine. In: Liang XT, Fang WS (eds) Medicinal chemistry of bioactive natural products. Wiley, New York, pp 183–256

  154. Meshnick SR (2001) Artemisinin and its derivatives. In: Rosenthal PJ (ed) Antimalarial chemotherapy. Humana, Totowa, pp 191–201

  155. Avery MA, McLean G, Edwards G, Ager A (2000) In: Cutler SJ, Cuttler HG (eds) Biologically active natural products, pharmaceuticals. CRC, Boca Raton, FL, pp 121–132

  156. Pareek A, Nanoly A, Kochar D, Patel KH, Mishra SK, Mathur PC (2006) Efficacy and safety of β-arteetther and α/β-antheether for treatment of acute Plasmodium falciparum malaria. Am J Trop Med 75:139–142

    Google Scholar 

  157. WHO (2008) The WHO Essential Medicines Library (online). http://mednet3.who.int/EMLib/. Accessed 28 March 2008

  158. Imakura Y, Yokoi T, Yamagishi T, Koyama J, Hu H, McPhail DR, McPhail AT, Lee KH (1988) Synthesis of deethanoquinghaosu, a novel analog of the antimalarial qinghaosu. J Chem Soc Commun 5:372–375

    Google Scholar 

  159. Vennerstrom JL, Arbe-Barns S, Brun R, Charman SA, Chiu FC, Chollet J, Dong Y, Dorn A, Hunziker D, Matile H, Mclntosh K, Padmanilayam M, Santo Tomas J, Scheurer C, Scomeaux B, Tang Y, Urwyler H, Wittlin S, Charman WN (2004) Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430:900–904

    Google Scholar 

  160. Dong Y, Chollet J, Matile H, Charman SA, Chiu FC, Charman WN, Soomeaux B, Urwyler H, Santo Tomas J, Scheurer C, Snyder C, Dorn A, Wang X, Katie JM, Tang Y, Wittlin S, Brun R, Vennerstrom JL (2005) Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: charting a workable structure–activity relationship using simple prototypes. J Med Chem 48:4953–4961

    Google Scholar 

  161. Perry CS, Charman SA, Prankerd RJ, Chiu FC, Dong Y, Vennerstrom JL, Charman WN (2006) Chemical kinetics and aqueous degradation pathways of a new class of synthetic ozonide antimalarials. J Pharm Sci 95:737–747

    Google Scholar 

  162. Dong Y, Tang Y, Chollet J, Matile H, Wittlin S, Charman SA, Charman WN, Tomas JS, Scheurer C, Scorneaux B, Bajpai S, Alexander SA, Wang X, Padmanilayam M, Cheruku SR, Brun R, Vennerstrom JL (2006) Effect of functional group polarity on the antimalarial activity of spiro- and dispiro-1,2,4-trioxolanes. Bioorg Med Chem 14:6368–6382

    Google Scholar 

  163. Waish JJ, Coughlan D, Heneghan N, Gaynor C, Bell A (2007) A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 17:3599–3602

    Google Scholar 

  164. Posner GH, Paik IH, Chang W, Borstnik K, Sinishtaj S, Rosenthal AS, Shapiro T (2007) Malaria-infected mice are cured by a single dose of novel artemisinin derivatives. J Med Chem 50:2516–2519

    Google Scholar 

  165. Haynes RK (2006) From artemisin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Topics Med Chem 6:509–537

    Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. K. Takeya and Y. Hitotsuyanagi of the Tokyo University of Pharmacy and Life Science, Dr. H. Morita of Hoshi Pharmaceutical University, Dr. O. Shirota of Tokushima Bunri University, and Dr. I. Takano of the Tokyo Metropolitan Institute of Public Health for their valuable contributions to some of this research. This investigation was supported by grants from the National Cancer Institute, NIH (CA-17625) and the National Institute of Allergy and Infectious Diseases, NIH (AI-33066), awarded to K.H. Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Hsiung Lee.

Additional information

Antitumor Agents 263 and Anti-AIDS Agents 74.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itokawa, H., Morris-Natschke, S.L., Akiyama, T. et al. Plant-derived natural product research aimed at new drug discovery. J Nat Med 62, 263–280 (2008). https://doi.org/10.1007/s11418-008-0246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-008-0246-z

Keywords

Navigation