Skip to main content
Log in

Salacia reticulata has therapeutic effects on obesity

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Salacia reticulata Wight (S. reticulata) is a herbal medicine used for treatment of early diabetes in Ayurvedic medicine. In previous reports, the extract of S. reticulata showed preventive effects on obesity and various metabolic disorders and a suppressive effect on differentiation in premature adipocytes. The aim of this research was to elucidate the therapeutic efficacy of the extract of S. reticulata on obesity and various metabolic disorders in 12-week-old TSOD mice with obesity and metabolic disorders and in mature 3T3-L1 adipocytes. In TSOD mice, S. reticulata therapy produced a reduction in body weight and mesenteric fat accumulation, an improvement in abnormal glucose metabolism, and an increase in adiponectin level in plasma. In addition, the mRNA expressions of hormone-sensitive lipase (HSL) and adiponectin were increased in mesenteric fat. In in vitro experiments, S. reticulata therapy produced suppression of intracellular triacylglycerol accumulation and enhancement of glycerol release into the medium in mature 3T3-L1 cells. The mRNA expressions of lipogenesis factor (peroxisome proliferator-activated receptor γ, lipoprotein lipase, CD36, and fatty acid binding protein 4) were down-regulated, while the expressions of lipolysis factor (adipose tissue triacylglycerol lipase and HSL) and adiponectin were up-regulated. Moreover, the extract of S. reticulata enhanced the expression of total AMP-activated protein kinase α (AMPKα) and phosphorylated AMPKα in mature adipocytes. These findings demonstrate that the extract of S. reticulata has therapeutic effects on obesity and metabolic disorders by enhancing lipogenesis genes and suppressing lipolysis genes through the activation of AMPKα in adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 24:29–33

    Article  CAS  PubMed  Google Scholar 

  2. Jayaweera DMA (ed) (1981) Medicinal plants used in Ceylon, part 1. National Science Council of Sri Lanka, Colombo, p 77

    Google Scholar 

  3. Yuhao L, Huang TH, Yamahara J (2008) Salacia root, a unique Ayurvedic medicine, meets multiple targets in diabetes and obesity. Life Sci 82:1045–1049

    Article  Google Scholar 

  4. Yoshikawa M, Ninomiya K, Shimoda H, Nishida N, Matsuda H (2002) Hepatoprotective and antioxidative properties of Salacia reticulata: preventive effects of phenolic constituents on CCl4-induced liver injury in mice. Biol Pharm Bull 25:72–76

    Article  CAS  PubMed  Google Scholar 

  5. Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H (2002) Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nutr 132:1819–1824

    CAS  PubMed  Google Scholar 

  6. Im R, Mano H, Matsuura T, Nakatani S, Shimizu J, Wada M (2009) Mechanisms of blood glucose-lowering effect of aqueous extract from stems of Kothala himbutu (Salacia reticulata) in the mouse. J Ethnopharmacol 121:234–240

    Article  PubMed  Google Scholar 

  7. Kishino E, Ito T, Fujita K, Kiuchi Y (2009) A mixture of Salacia reticulata (Kotala himbutu) aqueous extract and cyclodextrin reduces body weight gain, visceral fat accumulation, and total cholesterol and insulin increases in male Wistar fatty rats. Nutr Res 29:55–63

    Article  CAS  PubMed  Google Scholar 

  8. Yoshikawa M, Murakami T, Yashiro K, Matsuda H (1998) Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata. Chem Pharm Bull 46:1339–1340

    Article  CAS  PubMed  Google Scholar 

  9. Huang THW, Peng G, Li GQ, Yamahara J, Roufogalis BD, Li YH (2006) Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha. Toxicol Appl Pharmacol 210:225–235

    Article  PubMed  Google Scholar 

  10. Huang TH, He L, Qin Q, Yang Q, Peng G, Harada M, Qi Y, Yamahara J, Roufogalis BD, Li Y (2008) Salacia oblonga root decreases cardiac hypertrophy in Zucker diabetic fatty rats: inhibition of cardiac expression of angiotensin II type 1 receptor. Diabetes Obes Metab 10:574–585

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda H, Murakami T, Yashiro K, Yamahara J, Yoshikawa M (1999) Antidiabetic principles of natural medicines. IV. Aldose reductase and qlpha-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): structure of a new friedelane-type triterpene, kotalagenin 16-acetate. Chem Pharm Bull 47:1725–1729

    Article  CAS  PubMed  Google Scholar 

  12. Im R, Mano H, Nakatani S, Shimizu J, Wada M (2008) Aqueous extract of Kotahla Himbutu (Salacia reticulata) stems promotes oxygen consumption and suppresses body fat accumulation in mice. J Health Sci 54:645–653

    Article  Google Scholar 

  13. Shivaprasad HN, Bhanumathy M, Sushma G, Midhun T, Raveendra KR, Sushma KR, Venkateshwarlu K (2013) Salacia reticulata improves serum lipid profiles and glycemic control in patients with prediabetes and mild to moderate hyperlipidemia: a double-blind, placebo-controlled, randomized trial. J Med Food 16:564–568

    Article  CAS  PubMed  Google Scholar 

  14. Shimada T, Nagai E, Harasawa Y, Akase T, Aburada T, Iizuka S, Miyamoto K, Aburada M (2010) Metabolic disease prevention and suppression of fat accumulation by Salacia reticulata. J Nat Med 64:266–274

    Article  PubMed  Google Scholar 

  15. Akase T, Shimada T, Harasawa Y, Akase T, Ikeya Y, Nagai E, Iizuka S, Nakagami G, Iizaka S, Sanada H, Aburada M (2011) Preventive effects of Salacia reticulata on obesity and metabolic disorders in TSOD mice. Evid Based Complement Alternat Med. doi:10.1093/ecam/nep052

    Google Scholar 

  16. Watanabe M, Shimada T, Iiduka S, Iida N, Kojima K, Ishizaki J, Sai Y, Miyamoto K, Aburada M (2011) Preventive effects of Salacia reticulata on non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) in monosodium glutamate treated mice. J Tradition Med 28:73–82

    CAS  Google Scholar 

  17. Shimada T, Nagai E, Harasawa Y, Watanabe M, Negishi K, Akase T, Sai Y, Miyamoto K, Aburada M (2011) Salacia reticulata inhibits differentiation of 3T3-L1 adipocytes. J Ethnopharmacol 136:67–74

    Article  PubMed  Google Scholar 

  18. Suzuki W, Iizuka S, Tabuchi M, Funo S, Yanagisawa T, Kimura M, Sato T, Endo T, Kawamura H (1999) A new mouse model of spontaneous diabetes derived from ddY strain. Exp Anim 48:181–189

    Article  CAS  PubMed  Google Scholar 

  19. Iizuka S, Suzuki W, Tabuchi M, Nagata M, Imamura S, Kobayashi Y, Kanitani M, Yanagisawa T, Kase Y, Takeda S, Aburada M, Takahashi KW (2005) Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity. Exp Anim 54:71–83

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi A, Tabuchi M, Suzuki W, Iizuka S, Nagata M, Ikeya Y, Takeda S, Shimada T, Aburada M (2006) Insulin resistance and low sympathetic nerve activity in the Tsumura Suzuki obese diabetic mouse: a new model of spontaneous type 2 diabetes mellitus and obesity. Metabolism 55:1664–1669

    Article  CAS  PubMed  Google Scholar 

  21. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  22. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  CAS  PubMed  Google Scholar 

  23. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361

    Article  CAS  PubMed  Google Scholar 

  24. Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297

    Article  CAS  PubMed  Google Scholar 

  25. Bergeron R, Russell RR 3rd, Young LH, Ren JM, Marcucci M, Lee A, Shulman GI (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276:E938–E944

    CAS  PubMed  Google Scholar 

  26. Ojuka EO (2004) Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63:275–278

    Article  CAS  PubMed  Google Scholar 

  27. Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181:8633–8641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lihn AS, Pedersen SB, Lund S, Richelsen B (2008) The anti-diabetic AMPK activator AICAR reduces IL-6 and IL-8 in human adipose tissue and skeletal muscle cells. Mol Cell Endocrinol 292:36–41

    Article  CAS  PubMed  Google Scholar 

  29. Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274:2100–2103

    Article  CAS  PubMed  Google Scholar 

  30. Gaidhu MP, Fediuc S, Anthony NM, So M, Mirpourian M, Perry RL, Ceddia RB (2009) Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. J Lipid Res 50:704–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Xi X, Han J, Zhang JZ (2001) Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase. J Biol Chem 276:41029–41034

    Article  CAS  PubMed  Google Scholar 

  32. Lee JO, Lee SK, Kim JH, Kim N, You GY, Moon JW, Kim SJ, Park SH, Kim HS (2012) Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J Biol Chem 287:44121–44129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264

    Article  CAS  PubMed  Google Scholar 

  34. Chen S, Li Z, Li W, Shan Z, Zhu W (2011) Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can J Physiol Pharmacol 89:793–799

    CAS  PubMed  Google Scholar 

  35. Wang F, Yan J, Niu Y, Li Y, Lin H, Liu X, Liu J, Li L (2014) Mangiferin and its aglycone, norathyriol, improve glucose metabolism by activation of AMP-activated protein kinase. Pharm Biol 52:68–73

    Article  CAS  PubMed  Google Scholar 

  36. Niu Y, Li S, Na L, Feng R, Liu L, Li Y, Sun C (2012) Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK. PLoS One 7:e30782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Girón MD, Sevillano N, Salto R, Haidour A, Manzano M, Jiménez ML, Rueda R, López-Pedrosa JM (2009) Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes: role of mangiferin. Clin Nutr 28:565–574

    Article  PubMed  Google Scholar 

  38. Liu Z, Li Q, Huang J, Liang Q, Yan Y, Lin H, Xiao W, Lin Y, Zhang S, Tan B, Luo G (2013) Proteomic analysis of the inhibitory effect of epigallocatechin gallate on lipid accumulation in human HepG2 cells. Proteome Sci 11:32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Li Y, Zhao S, Zhang W, Zhao P, He B, Wu N, Han P (2011) Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo. Diabetes Res Clin Pract 93:205–214

    Article  CAS  PubMed  Google Scholar 

  40. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694–699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Editorial assistance to the manuscript was provided at Nemours/Alfred I. DuPont Hospital for Children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Shimada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, T., Nakayama, Y., Harasawa, Y. et al. Salacia reticulata has therapeutic effects on obesity. J Nat Med 68, 668–676 (2014). https://doi.org/10.1007/s11418-014-0845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0845-9

Keywords

Navigation