Skip to main content
Log in

Preventive agents for neurodegenerative diseases from resin of Dracaena cochinchinensis attenuate LPS-induced microglia over-activation

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Our previous research revealed resin of Dracaena cochinchinensis as a candidate for therapy of neurodegenerative diseases. In the present study, the material basis of Chinese Dragon’s blood and the primary mechanism of the effective components are discussed. Multiple chromatography and spectra analysis were utilized to identify effective constituents. The production of NO was determined using nitrite assay in BV-2 microglial cells stimulated with lipopolysaccharide (LPS). Cell viability was tested using MTT assay. The mRNA level of inducible nitric oxide synthase (iNOS) was investigated by quantitative real-time PCR (qRT-PCR), and the production of IL-6 and TNF-α in the cell supernatants was tested by ELISA. The bioassay-directed separation of the effective extract of D. cochinchinensis afforded two new compounds, a stilbene-flavane dimer (2) and a quinoid flavonoid (11), in addition to 25 known compounds. The evaluation of their anti-neuroinflammatory activities showed that 5, 9, 12, 13, and 14 could exhibit significant anti-neuroinflammatory effects without cytotoxities at the tested concentration, compared to a positive control, minocycline (21.87 ± 2.36 µM). A primary mechanistic study revealed that the effective components could inhibit over-activation of microglial through decreasing the expressions of iNOS, proinflammatory cytokines IL-6 and TNF-α in LPS- induced BV2 microglial cells. Chalcone 9, homoisoflavane 5 and flavone 1214 are considered to be responsible for the anti-neuroinflammatory effects of Chinese Dragon’s blood. These could inhibit neuroinflammation by reducing the expressions of iNOS, IL-6 and TNF-α in over-activated microglial. Furthermore, the SAR is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Prince M, Prina M, Guerchet M (2013) Journey of caring: an analysis of long-term care for dementia. World Alzheimer Report 19 Sep 2013

  2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  CAS  PubMed  Google Scholar 

  3. Abbott A (2011) Dementia: a problem for our age. Nature 475:2–4

    Article  CAS  Google Scholar 

  4. Barrientos RM, Kitt MM, Watkins LR, Maier SF (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience 309:84–99

    Article  CAS  PubMed  Google Scholar 

  5. Kumar H, Lim HW, More SV, Kim BW, Koppula S, Kim IS, Choi DK (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13:10478–10504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakajima K, Kohsaka S (1998) Functional roles of microglia in the central nervous system. Hum Cell 11:141–155

    CAS  PubMed  Google Scholar 

  7. Suzumura A, Takeuchi H, Zhang G, Kuno R, Mizuno T (2006) Roles of gliaderived cytokines on neuronal degeneration and regeneration. Ann N Y Acad Sci 1088:219–229

    Article  CAS  PubMed  Google Scholar 

  8. Perry VH, Nicoll JA, Holmes C (2001) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  Google Scholar 

  9. Li N, Ma ZJ, Li MJ, Xing YC, Hou Y (2014) Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese Dragon’s blood. J Ethnopharmacol 152:508–521

    Article  CAS  PubMed  Google Scholar 

  10. Yi T, Chen HB, Zhao ZZ, Yu ZL, Jiang ZH (2011) Comparison of the chemical profiles and anti-platelet aggregation effects of two “Dragon’s Blood” drugs used in traditional Chinese medicine. J Ethnopharmacol 133:796–802

    Article  CAS  PubMed  Google Scholar 

  11. Xin N, Li YJ, Li Y, Dai RJ, Meng WW, Chen Y, Schlappi M, Deng YL (2011) Dragon’s blood extract has antithrombotic properties, affecting platelet aggregation functions and anticoagulation activities. J Ethnopharmacol 135:510–514

    Article  PubMed  Google Scholar 

  12. Miller MJS, MacNaughton WK, Zhang XJ, Thompson JH, Charbonnet RM, Bobrowski P, Lao J, Trentacosti AM, Sandoval M (2000) Treatment of gastric ulcers and diarrhea with the Amazonian herbal medicine sangre de grado. Am J Physiol Gastrointest Liver Physiol 279:192–200

    Article  Google Scholar 

  13. Risco E, Ghia F, Vila R, Iglesias J, Alvarez E, Canigueral S (2003) Immunomodulatory activity and chemical characterisation of sangre de drago (Dragon’s blood) from Croton lechleri. Planta Med 69:785–794

    Article  CAS  PubMed  Google Scholar 

  14. Edward HGM, de Oliveira LFC, Quye A (2001) Raman spectroscopy of coloured resins used in antiquity: dragon’s blood and related substances. Spectrochim Acta Part A Mol Biomol Spectrosc 57:2831–2842

    Article  CAS  Google Scholar 

  15. Ubillas R, Jolad SD, Bruening RC (1999) SP-303, an antiviral oligomeric proanthocyanidin from the latex of Croton lechleri (Sangre de Drago). Phytomedicine 1:77–106

    Article  Google Scholar 

  16. Gupta D, Bleakley B, Gupta RK (2008) Dragon’s blood: botany, chemistry and therapeutic uses. J Ethnopharmacol 115:361–380

    Article  CAS  PubMed  Google Scholar 

  17. Rossia D, Guerrinia A, Paganettoa G, Bernacchiaa G, Confortib F, Stattib G, Maiettia S, Poppia I, Tacchinia M, Sacchettia G (2013) Croton lechleri Müll Arg. (Euphorbiaceae) stem bark essential oil as possible mutagen-protective food ingredient against heterocyclic amines from cooked food. Food Chem 139:439–447

    Article  CAS  Google Scholar 

  18. Alonso-Castro AJ, Ortiz-Sanchez E, Domínguez F, López-Toledo G, Chávezd M, Ortiz-Tellob ADJ, García-Carrancáb A (2012) Antitumor effect of Croton lechleri Mull. Arg. (Euphorbiaceae). J Ethnopharmacol 140:438–442

    Article  PubMed  Google Scholar 

  19. Montopoli M, Bertin R, Chen Z, Bolcato J, Caparrotta L, Froldi G (2012) Croton lechleri sap and isolated alkaloid taspine exhibit inhibition against human melanoma SK23 and colon cancer HT29 cell lines. J Ethnopharmacol 144:747–753

    Article  CAS  PubMed  Google Scholar 

  20. Zheng QA, Li H, Zhang Y, Yang C (2004) Flavonoids from the resin of Dracaena cochinchinensis. Helv Chim Acta 87:1167–1171

    Article  CAS  Google Scholar 

  21. Chen P, Yang JS (2007) Flavonol galactoside caffeiate ester and homoisoflavones from Caesalpinia millettii HOOK. et ARN. Chem Pharm Bull 55:655–657

    Article  CAS  Google Scholar 

  22. Ichikawa K, Kitaoka M, Taki M, Takaishi S, Iijima Y, Boriboon M, Akiyama T (1993) Retrodihydrochalcones and homoisoflavones isolated from Thai medicinal plant Dracaena loureiri and their estrogen agonist activity. Planta Med 63:540–543

    Article  Google Scholar 

  23. Yang Y, Huang SX, Zhao YM, Zhao QS, Sun HD (2005) Flavonoids from Lycoris aurea. Nat Prod Res Dev 17:539–541

    CAS  Google Scholar 

  24. Ji S, Li Z, Song W, Wang Y, Liang W (2016) Bioactive constituents of Glycyrrhiza uralensis (Licorice): discovery of the effective components of a traditional herbal medicine. J Nat Prod 79:281–292

    Article  CAS  PubMed  Google Scholar 

  25. Hao Q, Saito Y, Matsuo Y, Li HZ, Tanaka T (2015) Chalcane-stilbene conjugates and oligomeric flavonoids from Chinese Dragon’s blood produced from Dracaena cochinchinensis. Phytochemistry 119:76–82

    Article  CAS  PubMed  Google Scholar 

  26. Jiang WJ, Daikonya A, Ohkawara M, Nemoto T, Noritake R (2017) Structure-activity relationship of the inhibitory effects of flavonoids on nitric oxide production in RAW264.7 cells. Bioorg Med Chem 25:779–788

    Article  CAS  PubMed  Google Scholar 

  27. Masek A, Chrzescijanska E, Latos M, Zaborski M (2016) Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chem 215:501–507

    Article  PubMed  CAS  Google Scholar 

  28. Hauteville M, Rakotovao M, Duclos MC, Voirin B (1998) ChemInform abstract: synthesis of 5-hydroxy-6- and 8-methylflavones and their ultraviolet spectral differentiation. Phytochemistry 48:547–553

    Article  CAS  Google Scholar 

  29. Xiao TS, Wang Q, Jiang LL, Jiang JQ, Li YB (2013) Chemical constituents of Artemisia anomala. Chin Tradit Herb Drugs 44:515–518

    CAS  Google Scholar 

  30. Zheng SS, Wu T, Wang ZT (2011) Chemical constituents from the roots of Hedysarum polybotrys. Chin J Chin Mater Med 36:2350–2352

    CAS  Google Scholar 

  31. Huang YL, Chen CC (2011) Two tannins from Phyllanthus tenellus. J Nat Prod 61:523–524

    Article  Google Scholar 

  32. Chen PD, Liang JY (2006) Chemical constituents in Populus davidiana. Chin Tradit Herb Drugs 37:816–818

    CAS  Google Scholar 

  33. Yang WQ, Wang HC, Wang WJ, Wang Y, Zhang XQ, Ye W (2011) Chemical constituents from the fruits of Areca catechu. J Chin Med Mater 35:400–403

    Google Scholar 

  34. Frau J, Muñoz F, Glossman-Mitnik D (2016) A molecular electron density theory study of the chemical reactivity of cis- and trans-Resveratrol. Molecules 21:1650–1663

    Article  CAS  PubMed Central  Google Scholar 

  35. Wang YN, Lin S, Chen MH, Jiang BY, Guo QL, Zhu CG, Wang SJ, Yang YC, Shi JG (2012) Chemical constituents from aqueous extract of Gastrodia elata. Chin J Chin Mater Med 37:1775–1781

    CAS  Google Scholar 

  36. Song QY, Fu YB, Liu J, Zheng D, Han L, Huang XS (2011) Chemical constituents from Angelica sinensis. Chin Tradit Herb Drugs 42:1900–1904

    CAS  Google Scholar 

  37. Viñas-Bravo O, Merino-Montiel P, Romero-López A, Montiel-Smith S, Meza-Reyes S (2015) Epimerization of C-22 in (25R)- and (25S)-sapogenins. Steroids 93:60–67

    Article  PubMed  CAS  Google Scholar 

  38. Yang L, Feng F, Gao Y (2009) Chemical constituents from herb of Solanum lyratum. Chin J Chin Mater Med 34:1805–1808

    CAS  Google Scholar 

  39. Penkov S, Kaptan D, Erkut C, Sarov M, Mende F (2015) Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nat Commun 20:8060

    Article  CAS  Google Scholar 

  40. Chau VM, Tien DN, Nguyen HD, Phan VK (2009) Unusual 22S-spirostane steroids from Dracaena cambodiana. et ARN. Nat Prod Commun 4:1197–1200

    Google Scholar 

  41. Hou Y, Li GX, Wang J, Pan YN, Jiao K, Du J, Chen R, Wang B, Li N (2017) Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways. Sci Rep 7:45105

    Article  CAS  Google Scholar 

  42. Zhou D, Wei HY, Jiang Z, Li XZ, Jiao K, Jia XG, Hou Y, Li N (2017) Natural potential neuroinflammatory inhibitors from Alhagi sparsifolia Shap. Bioorg Med Chem Lett 27:973–978

    Article  CAS  PubMed  Google Scholar 

  43. Zhou D, Zhang YH, Jiang Z, Hou Y, Jiao K, Yan CY, Li N (2017) Biotransformation of isofraxetin-6-O-β-d-glucopyranoside by Angelica sinensis (Oliv.) Diels callus. Bioorg Med Chem Lett 27:248–253

    Article  CAS  PubMed  Google Scholar 

  44. Xing YC, Li N, Zhou D, Chen G, Jiao K, Wang WL, Si YY, Hou Y (2017) Sesquiterpene coumarins from Ferula sinkiangensis act as neuroinflammation inhibitors. Planta Med 83:135–142

    CAS  PubMed  Google Scholar 

  45. Zhou D, Li N, Zhang YH, Yan CY, Jiao K, Sun Y, Ni H, Lin B, Hou Y (2016) Biotransformation of neuro-inflammation inhibitor Kellerin by Angelica sinensis (Oliv.) Diels callus. RSC Adv 6:97302–97312

    Article  CAS  Google Scholar 

  46. Li N, Wang Y, Li XZ, Zhang H, Zhou D, Wang WL, Li W, Zhang XR, Li XY, Hou Y, Meng DL (2016) Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge. Bioorg Med Chem Lett 26:5018–5023

    Article  CAS  PubMed  Google Scholar 

  47. Hou Y, Li N, Xie GB, Wang J, Yuan Q, Jia CC, Liu X, Li GX, Tang YZ, Wang B (2015) Pterostilbene exerts anti- neuro inflammatory effect on lipopolysaccharide-activated microglia via inhibition of MAPK signalling pathways. J Funct Foods 19:676–687

    Article  CAS  Google Scholar 

  48. Li N, Meng DL, Pan Y, Cui QL, Li GX, Ni H, Sun Y, Qing DG, Jia XG, Pan YN, Hou Y (2015) Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria. J Funct Foods 17:837–846

    Article  CAS  Google Scholar 

  49. Li JY, Jiang Z, Li XZ, Hou Y, Liu F, Li N, Liu X, Yang LH, Chen G (2015) Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre. Bioorg Med Chem Lett 25:53–58

    Article  PubMed  CAS  Google Scholar 

  50. Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26:83–94

    Article  PubMed  Google Scholar 

  51. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100:8514–8519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hou Y, Xie G, Miao F, Ding L, Mou Y, Wang L, Su G, Chen G, Yang J, Wu C (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuropsychopharmacol Biol Psychiatry 3(54):92–102

    Article  CAS  Google Scholar 

  54. Hou Y, Xie G, Liu X, Li G, Jia C, Xu J, Wang B (2016) Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice. Psychopharmacology (Berl) 233(5):905–916

    Article  CAS  Google Scholar 

  55. Das A, Chai JC, Kim SH, Lee YS, Park KS, Jung KH, Chai YG (2015) Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4 ligands. BMC Genom 16:517

    Article  CAS  Google Scholar 

  56. Lyu SA, Lee SY, Lee SJ, Son SW, Kim MO, Kim GY, Kim YH, Yoon HJ, Kim H, Park DI, Ko WS (2006) Seungma-galgeun-tang attenuates proinflammatory activities through the inhibition of NF-kappaB signal pathway in the BV-2 microglial cells. J Ethnopharmacol 107(1):59–66

    Article  PubMed  Google Scholar 

  57. Yu DK, Lee B, Kwon M, Yoon N, Shin T, Kim NG, Choi JS, Kim HR (2015) Phlorofucofuroeckol B suppresses inflammatory responses by down-regulating nuclear factor κB activation via Akt, ERK, and JNK in LPS-stimulated microglial cells. Int Immunopharmacol 28(2):1068–1075

    Article  CAS  PubMed  Google Scholar 

  58. Nan L, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W (2016) GLP-2 attenuates LPS-induced inflammation in BV-2 cells by inhibiting ERK1/2, JNK1/2 and NF-κB signaling pathways. Int J Mol Sci 17(2):190–200

    Article  CAS  Google Scholar 

  59. Huang B, He D, Chen G, Ran X, Guo W, Kan X, Wang W, Liu D, Fu S, Liu J (2018) alpha-Cyperone inhibits LPS-induced inflammation in BV-2 cells through activation of Akt/Nrf2/HO-1 and suppression of the NF-kappaB pathway. Food Funct 9(5):2735–2743

    Article  CAS  PubMed  Google Scholar 

  60. Morales-Serna JA, Jiménez A, Estrada-Reyes R, Marquez C, Cárdenas J, Salmón M (2010) Homoisoflavanones from Agave tequilana weber. Molecules 15:3295–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford

    Google Scholar 

  62. OʼBoyle NM, Tenderholt A, Langner KM (2009) Cclib: a library for package independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported partially by National Natural Science Foundation of China (Grant no. 81473108, 81673323, U1403102, 81473330, U1603125), Natural Science Foundation of Liaoning Province, Liaoning, China (Grant no. 2015020732), Shenyang science and technology research project, Liaoning, China (Grant no. F15-199-1-26), Research Project for Key laboratory of Liaoning Educational Committee, Liaoning, China (Grant no. LZ2015067), The project of the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2017-B03, CMEMR2018-B01), Program for Liaoning Excellent Talents in University (LR2015022) and the Fundamental Research Funds for the Central Universities (N162004003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Li or Yue Hou.

Ethics declarations

Conflict of interest

The Author(s) declare(s) that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Su, G., Li, N. et al. Preventive agents for neurodegenerative diseases from resin of Dracaena cochinchinensis attenuate LPS-induced microglia over-activation. J Nat Med 73, 318–330 (2019). https://doi.org/10.1007/s11418-018-1266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1266-y

Keywords

Navigation