Skip to main content
Log in

New vasorelaxant indole alkaloids, taberniacins A and B, from Tabernaemontana divaricata

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Taberniacins A (1) and B (2), new indole alkaloids, were isolated from the stems of Tabernaemontana divaricata (Apocynaceae). Structure elucidation of 1 and 2 was based on spectroscopic methods and total synthesis. Each alkaloid showed vasorelaxant activity against phenylephrine-induced contraction of isolated rat aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Pratchayasakul W, Pongchaidecha A, Chattipakorn N, Chattipakorn S (2008) Ethnobotany & ethnopharmacology of Tabernaemontana divaricata. Indian J Med Res 127:317–335

    CAS  PubMed  Google Scholar 

  2. Tarseli MA, Raehal KM, Brasher AK, Streicher JM, Groer CE, Cameron MD, Bohn LM, Micalizio GC (2011) Synthesis of conolidine, a potent non-opioid analgesic for tonic and persistent pain. Nat Chem 3:449–453

    Article  Google Scholar 

  3. Dagnino D, Schripsema J, Verpoorte R (1993) Comparison of terpenoid indole alkaloid production and degradation in two cell lines of Tabernaemontana divaricata. Plant Cell Rep 13:95–98

    Article  CAS  Google Scholar 

  4. Kam TS, Loh KY, Lim LH, Loong WL, Chuah CH, Wei C (1992) New alkaloids from the leaves of Tabernaemontana divaricata. Tetrahedron Lett 33:969–972

    Article  CAS  Google Scholar 

  5. Kam TS, Loh KY, Wei C (1993) Conophylline and conophyllidine:new dimeric alkaloids from Tabernaemontana divaricata. J Nat Prod 56:1865–1871

    Article  CAS  Google Scholar 

  6. Kam TS, Anuradha S (1995) Alkaloids from Tabernaemontana divaricata. Phytochemistry 40:313–316

    Article  CAS  Google Scholar 

  7. Kam TS, Pang HS, Lim TM (2003) Biologically active indole andbisindole alkaloids from Tabernaemontana divaricata. Org Biomol Chem 1:1292–1297

    Article  CAS  Google Scholar 

  8. Kam TS, Choo YM, Komiyama K (2004) Biologically active iboganand vallesamine derivatives from Tabernaemontana divaricata. Chem Biodivers 1:646–656

    Article  CAS  Google Scholar 

  9. Raj K, Shoeb A, Kapil RS, Popli SP (1974) Alkaloids of Tabernaemontana divaricata. Phytochemistry 13:1621–1622

    Article  CAS  Google Scholar 

  10. Schripsema J, Peltenburg-Looman A, Erkelens C, Verpoorte R (1991) Nitrogen metabolism in cultures of Tabernaemontana divaricata. Phytochemistry 30:3951–3954

    Article  CAS  Google Scholar 

  11. van Beek TA, Verpoorte R, Svendsen AB, Leeuwenberg AJ, Bisset NG (1984) Tabernaemontana L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J Ethnopharmacol 10:1–156

    Article  Google Scholar 

  12. Hirasawa Y, Miyama S, Hosoya T, Koyama K, Rahman A, Kusumawati I, Zaini NC, Morita H (2009) Alasmontamine A, a first tetrakis monoterpene indole alkaloid from Tabernaemontana elegans. Org Lett 11:5718–5721

    Article  CAS  Google Scholar 

  13. Nugroho AE, Moue M, Sasaki T, Shirota O, Hadi AHA, Morita H (2018) Yohimbine-related alkaloids from Tabernaemontana corymbosa. Nat Prod Commun 13:347–350

    Google Scholar 

  14. Nugroho AE, Hashimoto A, Wong CP, Yokoe H, Tsubuki M, Kaneda T, Hadi AHA, Morita H (2018) Ceramicines M-P from Chisocheton ceramicus: isolation and structure-activity relationship study. J Nat Med 72:64–72

    Article  CAS  Google Scholar 

  15. Nugroho AE, Inoue D, Wong CP, Hirasawa Y, Kaneda T, Shirota O, Hadi AHA, Morita H (2018) Reinereins A and B, new onocerane triterpenoids from Reinwardtiodendron cinereum. J Nat Med 72:588–592

    Article  CAS  Google Scholar 

  16. Kaneda T, Matsumoto M, Sotozono Y, Nugroho AE, Hirasawa Y, Hadi AHA, Morita H (2019) Cycloartane-triterpenoid, (23R, 24E)-23-acetoxy-mangiferonic acid inhibited proliferation and migration in B16-F10 melanoma via MITF downregulation caused by inhibition of both β-catenin and c-Raf-MEK1-ERK signaling axis. J Nat Med 73:47–58

    Article  CAS  Google Scholar 

  17. Kaneda T, Nakajima Y, Koshikawa S, Nugroho AE, Morita H (2019) Cyclolinopeptide F, a cyclic peptide from flaxseed inhibited RANKL-induced osteoclastogenesis via downergulation of RANK expression. J Nat Med. https://doi.org/10.1007/s11418-019-01292-w

  18. Prema, Wong CP, Awouafack MD, Nugroho AE, Win YY, Win NN, Ngwe H, Morita H, Morita H (2019) Two new quassinoids and other constituents from the Picrasma javanica wood and their biological activities. J Nat Med. https://doi.org/10.1007/s11418-018-01279-z

  19. McLean S, Murray DG (1970) Isolation of indole (β-carboline), pyridine, and indole-pyridine alkaloids from Nauclea diderrichii. Can J Chem 48:867–868

    Article  CAS  Google Scholar 

  20. Murray DG, Szakolcia A, McLean S (1972) The constituents of Nauclea diderrichii. Part II. Isolation and classification of constituents; simple β-carboline and pyridine alkaloids. Can J Chem 50:1486–1495

    Article  CAS  Google Scholar 

  21. Mukhtar MR, Osman N, Awang K, Hazni H, Qureshi AK, Hadi AHA, Zaima K, Morita H, Litaudon M (2012) Neonaucline, a new indole alkaloid from the leaves of Ochreinauclea maingayii (Hook. f.) Ridsd. (Rubiaceae). Molecules 17:267–274

    Article  CAS  Google Scholar 

  22. Ahmad K, Thomas NF, Hadi AHA, Mukhtar MR, Mohamad K, Nafiah MA, Takeya K, Morita H, Litaudon M, Arai H, Awang K (2010) Oppositinines A and B: new vasorelaxant β-carboline alkaloids from Neisosperma oppositifolia. Chem Pharm Bull 58:1085–1087

    Article  CAS  Google Scholar 

  23. Suckling CJ, Murphy JA, Khalaf AI, Zhou S, Lizos DE, Nhien AN, Yasumatsu H, McVie A, Young LC, McCraw C, Waterman PG, Morris BJ, Pratt JA, Harvey AL (2007) M4 agonists/5HT7 antagonists with potential as antischizophrenic drugs: serominic compounds. Bioorg Med Chem Lett 17:2649–2655

    Article  CAS  Google Scholar 

  24. Cai L, Liu X, Tao X, Shen D (2004) Efficient microwave-assisted cyanation of aryl bromide. Synth Commun 34:1215–1221

    Article  CAS  Google Scholar 

  25. Schareina T, Zapf A, Magerlein W, Muller N, Beller M (2007) A state-of-the-art cyanation of aryl bromides: a novel and versatile copper catalyst system inspired by nature. Chem Eur J 13:6249–6254

    Article  CAS  Google Scholar 

  26. Weissman SA, Zewge D, Chen C (2005) Ligand-free palladium-catalyzed cyanation of aryl halides. J Org Chem 70:1508–1510

    Article  CAS  Google Scholar 

  27. Baliski R, Kaczmarek L (1993) Mild and efficient conversion of nitriles to amides with basic urea-hydrogen peroxide adduct. Synth Commun 23:3149–3155

    Article  Google Scholar 

  28. Mukhtar MR, Nafiah MA, Awang K, Thomas NF, Zaima K, Morita H, Litaudon M, Hadi AHA (2009) α’-Oxoperakensimines A-C, new bisbenzylisoquinoline alkaloids from Alseodaphne perakensis (Gamble) Kosterm. Heterocycles 78:2085–2092

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants in-Aid for Scientific Research from JSPS, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Morita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirasawa, Y., Dai, X., Deguchi, J. et al. New vasorelaxant indole alkaloids, taberniacins A and B, from Tabernaemontana divaricata. J Nat Med 73, 627–632 (2019). https://doi.org/10.1007/s11418-019-01293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01293-9

Keywords

Navigation