Skip to main content
Log in

Special relativity and theory of gravity via maximum symmetry and localization

  • Published:
Science in China Series A: Mathematics Aims and scope Submit manuscript

Abstract

Like Euclid, Riemann and Lobachevski geometries are on an almost equal footing, based on the principle of relativity of maximum symmetry proposed by Professor Lu Qikeng and the postulate on invariant universal constants c and R, the de Sitter/anti-de Sitter (dS/AdS) special relativity on dS/AdS-space with radius R can be set up on an almost equal footing with Einstein’s special relativity on the Minkowski-space in the case of R→∞.

Thus the dS-space is coin-like: a law of inertia in Beltrami atlas with Beltrami time simultaneity for the principle of relativity on one side, and the proper-time simultaneity and a Robertson-Walker-like dS-space with entropy and an accelerated expanding S 3 fitting the cosmological principle on another side.

If our universe is asymptotic to the Robertson-Walker-like dS-space of R ≃ (3/Λ)1/2, it should be slightly closed in O(Λ) with entropy bound S ≃ 3πc 3 k B . Contrarily, via its asymptotic behavior, it can fix on Beltrami inertial frames without ‘an argument in a circle’ and acts as the origin of inertia.

There is a triality of conformal extensions of three kinds of special relativity and their null physics on the projective boundary of a 5-d AdS-space, a null cone modulo projective equivalence [\( \mathcal{N} \)] ≅ P (AdS 5). Thus there should be a dS-space on the boundary of S 5 × AdS 5 as a vacuum of supergravity.

In the light of Einstein’s ‘Galilean regions’, gravity should be based on the localized principle of relativity of full maximum symmetry with a gauge-like dynamics. Thus, this may lead to the theory of gravity of corresponding local symmetry. A simple model of dS-gravity characterized by a dimensionless constant g ≃(ΛGħ/3c 3)1/2 ∼ 10−61 shows the features on umbilical manifolds of local dS-invariance. Some gravitational effects out of general relativity may play a role as dark matter.

The dark universe and its asymptotic behavior may already indicate that the dS special relativity and dS-gravity be the foundation of large scale physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Look K H (Lu Q K). Why the Minkowski metric must be used? unpublished (1970)

  2. Look K H, Tsou C L, Kuo H Y. Kinematic effect in the classical domains and the redshift phenomena of extragalactic objects. Acta Phys Sin, 23: 225–238 (1974)

    Google Scholar 

  3. Lu Q K. Heisenberg Group and Energy-Momentum Conservative Law in de Sitter Spaces-In Memory of the 100th Anniversary of Einstein’s Special Relativity and the 70th Anniversary of Dirac’s de-Sitter Spaces and Their Boundaries. Commun Theor Phys, 44: 389–392 (2005)

    Google Scholar 

  4. Guo H Y, Huang C G, Xu Z, et al. On Beltrami model of de Sitter spacetime. Mod Phys Lett A, 19:1701–1709 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo H Y, Huang C G, Xu Z, et al. On special relativity with cosmological constant. Phys Lett A,331: 1–7 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo H Y, Huang C G, Tian Y, et al. Beltrami de Sitter spacetime and de Sitter invariant special relativity. Act Phys Sin, 54: 2494 (2005)

    Google Scholar 

  7. Guo H Y, Huang C G, Xu Z, et al. Three kinds of special relativity via inverse Wick rotation. Chin Phys Lett, 22: 2477–2480 (2005); arXiv:hep-th/0508094v1

    Article  Google Scholar 

  8. Guo H Y, Huang C G, Zhou B. Temperature at horizon in de Sitter spacetime. Europhys Lett, 72: 1045–1051 (2005); arXiv:hep-th/0404010v2

    Article  Google Scholar 

  9. Huang C G, Guo H Y, Tian Y, et al. Newton-Hooke limit of Beltrami-de Sitter spacetime, principles of Galilei-Hooke’s relativity and postulate on Newton-Hooke universal time. Interl J Mod Phys, A 22: 2535–2559 (2007); arXiv:hep-th/0403013

    Article  MathSciNet  Google Scholar 

  10. Tian Y, Guo H Y, Huang C G, et al. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time. Phys Rev D, 71, 044030 (2005); arXiv:hep-th/0411004

    Google Scholar 

  11. Yan M L, Xiao N C, Huang W, et al. Hamiltonian Formalism of the de Sitter Invariant Special Relativity. Comm Theor Phys, 48: 27–36 (2007); arXiv:hep-th/0512319v2

    Article  MathSciNet  Google Scholar 

  12. Guo H Y, Huang C G, Tian Y, et al. Snyder’s quantized space-time and de Sitter invariant relativity. Fron Phys China, 2: 358–363; (2007) arXiv:hep-th/0607016

    Article  Google Scholar 

  13. Guo H Y. The Beltrami model of de Sitter space: From Snyder’s quantized space-time to de Sitter invariant relativity. Front Phys China, 2: 358–363 (2007); arXiv:hep-th/0607017v1

    Article  Google Scholar 

  14. Guo H Y, Huang C G, Tian Y, et al. On de Sitter invariant special relativity and cosmological constant as origin of inertia. ArXiv:hep-th/0405137v3

  15. Guo H Y. On principle of inertia in closed universe. Phys Lett B, 653(1): 88–94 (2007); arXiv:hepth/0611341v2

    Article  MathSciNet  Google Scholar 

  16. Guo H Y, Huang C G, Tian Y, et al. Snyder’s model-de Sitter special relativity duality and de Sitter gravity. Clas Quan Grav, 24: 4009–4035 (2007); arXiv:gr-qc/0703078v2

    Article  MathSciNet  MATH  Google Scholar 

  17. Riess A G, Kirshner R P, Schmidt B P, et al. BVRI light curves for 22 type Ia Supernovae. Astrophys J, 117: 707–724 (1999)

    Google Scholar 

  18. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Θ and Λ from 42 High-Redshift Supernovae. Astrophys J, 517: 565–586 (1999)

    Article  Google Scholar 

  19. Bennett C L, Halpern M, Hinshaw G, et al. First Years Wilkinson Microwave Anisotropy Probe Observations: Preliminary Map and Basic Results. Astrophys J, 148(Suppl): 1–43 (2003)

    Article  Google Scholar 

  20. Spergel D N, Bean R, Doré O, et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology. Draft March 17, 2006. ArXiv:astro-ph/0603449; http://map.gsfc.nasa.gov/m mm/pub papers/threeyear.html

  21. Poincaré H. The present and the future of mathematical physics. Bull Amer Math Soc, 12: 240–260 (1906)

    Article  MathSciNet  Google Scholar 

  22. Einstein A. Zur Elektrodynamik bewegter Körper. Ann Phys, 322: 891–921 (1905)

    Article  Google Scholar 

  23. Einstein A. The Meaning of Relativity. Princeton: Princeton University Press, 1923

    MATH  Google Scholar 

  24. Beltrami E. Saggio di interpretazione delia geometria noneuclidea. Opere Mat, 1: 374–405 (1868)

    Google Scholar 

  25. Klein F. Gór Nachr, 419: (1871)

  26. Rosenfeld B A. A History of Non-euclidean Geometry: Evolution of the Concept of a Aeometric Space. New York: Springer, 1987

    Google Scholar 

  27. Cannon J W, Floyd W J, Kenyon R, et al. Hyperbolic Geometry. In: Flavors of Geometry. Math Sci Res Inst Publ, Vol 31, 59–115, Cambridge: Cambridge University Press, 1997

    Google Scholar 

  28. Klein F. Erlangen program. Inaugural address at the University of Erlangen, 1872

  29. Misner C, Thorne K, Wheeler J A. Gravitation. San Francisco: Freeman, 1972

    Google Scholar 

  30. Kobayashi S, Nomizu K. Foundations of Differential Geometry. New York: John Wiley and Sons, 1963

    MATH  Google Scholar 

  31. Lu Q K. Theory of nonlinear connections. Unpublished notes

  32. Lu Q K, Guo H Y, Wu K. A formulation of nonlinear gauge theory and its applications. In: Proceedings of the third Marcel Grossman meeting on general relativity. Beijing: Science Press, 1983, 89–106

    Google Scholar 

  33. Wu Y S, Li G D, Guo H Y. Gravitational Lagrangian and local de Sitter invariance. Chin Sci Bull, 19: 509–515 (1974)

    Google Scholar 

  34. Guo H Y. Gravitational Lagrangian and local de Sitter invariance (in Chinese). Chin Sci Bull, 21: 1–31 (1976)

    Google Scholar 

  35. Townsend P K. Small-scale structure of spacetime as the origin of the gravitational constant. Phys Rev D, 15: 2795–2801 (1977)

    Article  MathSciNet  Google Scholar 

  36. MacDowell S W, Mansouri F. Unified geometric theory of gravity and supergravity. Phys Rev Lett, 38: 739–742 (1977)

    Article  MathSciNet  Google Scholar 

  37. Stelle K S, West P C. Spontaneously broken de Sitter symmetry and the gravitational holonomy group. Phys Rev D, 21: 1466–1488 (1980)

    Article  MathSciNet  Google Scholar 

  38. Tseytlin A A. Poincaré and de Sitter gauge theories of gravity with propagating torsion. Phys Rev D, 26: 3327–3341 (1982)

    Article  MathSciNet  Google Scholar 

  39. Wilczek F. Riemann-Einstein Structure from Volume and Gauge Symmetry. Phys Rev Lett, 80: 4851 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yan M L, Zhao B H, Guo H Y. Renormalization of gravitation field with torsion. Chin Sci Bull, 24: 587 (1979)

    MathSciNet  Google Scholar 

  41. Yan M L, Guo H Y. The quantum gravity with torsion and ghost-free de Sitter gravity (II) chost-free property of SO(3,2 de Sitter gravity (in Chinese). Acta Physica Sinica, 33: 1377–1386 (1984)

    MathSciNet  Google Scholar 

  42. Spivak M. A Comprehensive Introduction to Differential Geometry III. 3rd ed. California: Publish or Perish, 1999

    Google Scholar 

  43. de Sitter W. Einstein’s theory of gravity III. Roy Astr Soc Month Not, 78: 3–15 (1917)

    Google Scholar 

  44. Pauli W. Theory of Relativity. New York: Pergamon Press, 1958

    MATH  Google Scholar 

  45. Snyder H S. Quantized space-time. Phys Rev, 71: 38–41 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  46. Amelino-Camelia G. Relativity in space-times with short-distance structure governed by an observerindependent (Planckian) length scale. Int J Mod Phys D, 11: 35–60 (2002); arXiv: gr-qc/0012051

    Article  MathSciNet  MATH  Google Scholar 

  47. Amelino-Camelia G. Testable scenario for relativity with minimum-length. Phys Lett B, 510: 255–263 (2001); arXiv: hep-th/0012238

    Article  MATH  Google Scholar 

  48. Kowalski-Glikman J. De Sitter space as an arena for doubly special relativity. Phys Lett B, 547: 291–296 (2002); arXiv: hep-th/0207279

    Article  MathSciNet  MATH  Google Scholar 

  49. Kowalski-Glikman J, Nowak S. Doubly special relativity and de Sitter space. Class Quant Grav, 20: 4799–4816 (2003); arXiv: hep-th/0304101

    Article  MathSciNet  MATH  Google Scholar 

  50. Schrödinger E. Expanding Universes. Cambridge: Cambridge University Press, 1956

    MATH  Google Scholar 

  51. Parikh M K, Savonije I, Verlinde E. Elliptic de Sitter space: dS/Z 2. Phys Rev D, 67, 064005 (2003)

    Google Scholar 

  52. Fock V. The Theory of Space-Time and Gravitation. New York: Pergamon Press, 1964

    Google Scholar 

  53. Hua L K. Harmonic Analysis for Analytic Functions of Several Complex Variables on Classical Domains (in Chinese). Beijing: Science Press, 1958

    Google Scholar 

  54. Lu Q K. Classical Manifolds and Classical Domains (in Chinese). Shanghai: Sci and Tech Press, 1963

    Google Scholar 

  55. Winberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: Wiley, 1972

    Google Scholar 

  56. Zhou B, Guo H Y. Conformal triality of de Sitter, Minkowski and Anti-de Sitter spaces In: Differential Geometry and Physics. The Proceeding of 23rd ICDGMTP, Tianjin, 2005, Ge M L, et al. eds. Singapore: World Sciencfic, 2006, 503–512; arXiv: hep-th/0512235

    Google Scholar 

  57. Guo H Y, Zhou B, Tian Y, et al. The triality of conformal extensions of three kinds of special relativity. Phys Rev D, 75, 026006 (2007); arXiv: hep-th/0611047

    Google Scholar 

  58. Maldacena J. The large N limit of superconformal field theories and supergravity. Int J Theor Phys, 38(4): 1113–1133 (1999); arXiv: hep-th/9711200

    Article  MathSciNet  MATH  Google Scholar 

  59. Penrose R, Rindler W. Spinors and Space-Time: Vol. 2, Spinor and Twistor Methods in Space-Time Geometry. Cambridge: Cambridge University Press, 1988

    Google Scholar 

  60. Cartan E. Comptes Rendus, 174: 437–439, 593–595, 734–737, 857–860, 1104–1107 (1922)

    MATH  Google Scholar 

  61. Wigner E P. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann Math, 40: 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  62. Ryder L. Quantum Field Theory, 2nd ed. Cambridge: Cambridge University Press, 2003

    Google Scholar 

  63. Trautman A. Summary of the GR6 conference. General Relativity and Gravitation, 3: 167–174 (1972)

    Article  Google Scholar 

  64. Zou Z L, et al. Research on the gauge theory of gravitation. Sci Sinica, XXII: 628–632 (1979)

    Google Scholar 

  65. Guo H Y. Einstein principle, gauge theory of gravitation and quantum geometrodynamics. In: The Proceeding of the 2nd Marcel Grossmann Meeting on General Relativity. Ruffini R, et al. ed. Amsterdam: North-Holland Publ, 1982

    Google Scholar 

  66. Kibble T W B. Lorentz invariance and the gravitational field. J Math Phys, 2: 212–221 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  67. Held F W, von der Heyde P. Kerlick G D, et al. General relativity with spin and torsion: Foundations and prospects. Rev Mod Phys, 48: 393–416 (1976)

    Article  Google Scholar 

  68. Guo H Y, Wu Y S, Zhang Y Z. A scheme for the gauge theory of gravity (in Chinese). Chin Sci Bull, 18: 72–(1973)

    Google Scholar 

  69. Wu Y S, Zou Z L, Chen S. Chin Sci Bull, 18: 119–121 (1973)

    Google Scholar 

  70. Huang P, Guo H Y. An interier solution for the Einstein-Yang equation. Chin Sci Bull, 19: 512–513 (1974)

    Google Scholar 

  71. Huang P. A concrete comparison between the simple solution of the gauge therory of gravitation and the coorsponding solution of relativity. Chin Sci Bull, 21: 69–73 (1976)

    Google Scholar 

  72. Einstein A. Physics and reality. J Franklin Inst, 221: 349 (1936)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HanYing Guo.

Additional information

Dedicated to Professor LU QiKeng on the occasion of his 80th birthday

This work was partially supported by the National Natural Science Foundation of China (Grant No. 90503002)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H. Special relativity and theory of gravity via maximum symmetry and localization. Sci. China Ser. A-Math. 51, 568–603 (2008). https://doi.org/10.1007/s11425-007-0166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-007-0166-5

Keywords

MSC(2000)

Navigation