Skip to main content
Log in

Non-Nehari manifold method for asymptotically periodic Schrödinger equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the semilinear Schrödinger equation

$$\left\{ {\begin{array}{*{20}c} { - \Delta u + V(x)u = f(x,u), \mathbb{R}^N ,} \\ {u \in H^1 (\mathbb{R}^N ),} \\ \end{array} } \right.$$

where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V 0(x) + V 1(x), V 0C(ℝN), V 0(x) is 1-periodic in each of x 1, x 2, …, x N and sup[σ(−Δ + V 0) ∩ (−∞, 0)] < 0 < inf[σ(−Δ + V 0) ∩ (0, ∞)], V 1C(ℝN) and lim|x|→∞ V 1(x) = 0. Inspired by previous work of Li et al. (2006), Pankov (2005) and Szulkin and Weth (2009), we develop a more direct approach to generalize the main result of Szulkin and Weth (2009) by removing the “strictly increasing” condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N 0 by using the diagonal method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349–381

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartsch T, Wang Z-Q. Existence and multiplicity results for some superlinear elliptic problems on ℝN. Comm Partial Differential Equations, 1995, 20: 1725–1741

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen G W, Ma S W. Asymptotically or super linear cooperative elliptic systems in the whole space. Sci China Math, 2013, 56: 1181–1194

    Article  MATH  MathSciNet  Google Scholar 

  4. Coti Zelati V, Rabinowitz P H. Homoclinic type solutions for a semilinear elliptic PDE on ℝN. Comm Pure Appl Math, 1992, 14: 1217–1269

    MathSciNet  Google Scholar 

  5. Ding Y. Variational Methods for Strongly Indefinite Problems. Singapore: World Scientific, 2007

    MATH  Google Scholar 

  6. Ding Y, Lee C. Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J Differential Equations 2006, 222: 137–163

    Article  MATH  MathSciNet  Google Scholar 

  7. Ding Y, Szulkin A. Bound states for semilinear Schrödinger equations with sign-changing potential. Calc Var Partial Differential Equations. 2007, 29: 397–419

    Article  MATH  MathSciNet  Google Scholar 

  8. Edmunds D E, Evans W D. Spectral Theory and Differential Operators. Oxford: Clarendon Press, 1987

    MATH  Google Scholar 

  9. Egorov Y, Kondratiev V. On Spectral Theory of Elliptic Operators. Basel: Birkhäuser, 1996

    Book  MATH  Google Scholar 

  10. He Y, Li G B. The existence and concentration of weak solutions to a class of p-Laplacian type problems in unbounded domains. Sci China Math, 2014, 57: 1927–1952

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang Y S, Zhou H S. Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Sci China Math, 2014, 57: 1163–1174

    Article  MATH  MathSciNet  Google Scholar 

  12. Kryszewski W, Szulkin A. Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv Differ Equ, 1998, 3: 441–472

    MATH  MathSciNet  Google Scholar 

  13. Li G B, Szulkin A. An asymptotically periodic Schrödinger equation with indefinite linear part. Commun Contemp Math, 2002, 4: 763–776

    Article  MATH  MathSciNet  Google Scholar 

  14. Li Y Q, Wang Z-Q, Zeng J. Ground states of nonlinear Schrödinger equations with potentials. Ann Inst H Poincaré Anal Non Linéaire, 2006, 23: 829–837

    Article  MATH  MathSciNet  Google Scholar 

  15. Lin X, Tang X H. Semiclassical solutions of perturbed p-Laplacian equations with critical nonlinearity. J Math Anal Appl, 2014, 413: 438–449

    Article  MathSciNet  Google Scholar 

  16. Lin X, Tang X H. Nehari-type ground state solutions for superlinear asymptotically periodic Schrödinger equation. Abstr Appl Anal, 2014, 2014: ID 607078, 7pp

    Google Scholar 

  17. Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223–283

    MATH  Google Scholar 

  18. Liu S. On superlinear Schrödinger equations with periodic potential. Calc Var Partial Differential Equations, 2012, 45: 1–9

    Article  MathSciNet  Google Scholar 

  19. Liu Z L, Wang Z-Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4: 561–572

    Google Scholar 

  20. Pankov A. Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J Math, 2005, 73: 259–287

    Article  MATH  MathSciNet  Google Scholar 

  21. Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43: 270–291

    Article  MATH  MathSciNet  Google Scholar 

  22. Schechter M. Superlinear Schrödinger operators. J Funct Anal, 2012, 262: 2677–2694

    Article  MATH  MathSciNet  Google Scholar 

  23. Szulkin A, Weth T. Ground state solutions for some indefinite variational problems. J Funct Anal, 2009, 257: 3802–3822

    Article  MATH  MathSciNet  Google Scholar 

  24. Tang X H. Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity. J Math Anal Appl, 2013, 401: 407–415

    Article  MATH  MathSciNet  Google Scholar 

  25. Tang X H. New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv Nonlinear Studies, 2014, 14: 361–373

    MATH  Google Scholar 

  26. Tang X H. Non-Nehari manifold method for superlinear Schrödinger equation. Taiwan J Math, 2014, 18: 1957–1979

    Google Scholar 

  27. Tang X H. New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum. J Math Anal Appl, 2014, 413: 392–410

    Article  MathSciNet  Google Scholar 

  28. Tang X H. Non-Nehari manifold method for asymptotically linear Schrödinger equation. J Aust Math Soc, doi:10.1017/S144678871400041X, 2014

    Google Scholar 

  29. Troestler C, Willem M. Nontrivial solution of a semilinear Schrödinger equation. Commun Partial Differ Equ, 1996, 21: 1431–1449

    Article  MATH  MathSciNet  Google Scholar 

  30. Willem M. Minimax Theorems. Boston: Birkhäuser, 1996

    Book  MATH  Google Scholar 

  31. Yang M. Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities. Nonlinear Anal, 2010, 72: 2620–2627

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang J, Zou W M. The critical case for a Berestycki-Lions theorem. Sci China Math, 2014, 57: 541–554

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhong X, Zou W M. Ground state and multiple solutions via generalized Nehari manifold. Nonlinear Anal, 2014, 102: 251–263

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianHua Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X. Non-Nehari manifold method for asymptotically periodic Schrödinger equations. Sci. China Math. 58, 715–728 (2015). https://doi.org/10.1007/s11425-014-4957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4957-1

Keywords

MSC(2010)

Navigation