Skip to main content
Log in

Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the drift-diffusion (DD) model of one dimensional semiconductor devices, which is a system involving not only first derivative convection terms but also second derivative diffusion terms and a coupled Poisson potential equation. Optimal error estimates are obtained for both the semi-discrete and fully discrete local discontinuous Galerkin (LDG) schemes with smooth solutions. In the fully discrete scheme, we couple the implicit-explicit (IMEX) time discretization with the LDG spatial discretization, in order to allow larger time steps and to save computational cost. The main technical difficulty in the analysis is to treat the inter-element jump terms which arise from the discontinuous nature of the numerical method and the nonlinearity and coupling of the models. A simulation is also performed to validate the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher U M, Ruuth S J, Spiteri R J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl Numer Math, 1997, 25: 151–167

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayuso B, Carrillo J A, Shu C-W. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinet Relat Models, 2011, 4: 955–989

    Article  MathSciNet  MATH  Google Scholar 

  3. Burman E, Ern A, Fernández M A. Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems. SIAM J Numer Anal, 2010, 48: 2019–2042

    Article  MathSciNet  MATH  Google Scholar 

  4. Castillo P. An optimal error estimate for the local discontinuous Galerkin method. In: Cockburn B, Karniadakis G, Shu C-W, eds. Discontinuous Galerkin Methods: Theory, Computation and Application. Lecture Notes in Computational Science and Egnineering, vol. 11. Berlin: Springer, 2000, 285–290

  5. Castillo P, Cockburn B, Perugia I, et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal, 2000, 38: 676–706

    Article  MathSciNet  Google Scholar 

  6. Castillo P, Cockburn B, Schötzau D, et al. Optimal a priori error estimates for the hp-version of the LDG method for convection diffusion problems. Math Comp, 2002, 71: 455–478

    Article  MathSciNet  MATH  Google Scholar 

  7. Cercignani C, Gamba I M, Jerome J W, et al. Device benchmark comparisons via kinetic, hydrodynamic, and high-field models. Comput Methods Appl Mech Engrg, 2000, 181: 381–392

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet P. The Finite Element Method for Elliptic Problem. Amsterdam-New York: NorthHolland, 1978

    Google Scholar 

  9. Cockburn B, Dong B, Guzman J. Optimal convergence of the original discontinuous Galerkin method for the transportreaction equation on special meshes. SIAM J Numer Anal, 2008, 48: 1250–1265

    Article  MathSciNet  Google Scholar 

  10. Cockburn B, Hou S, Shu C-W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math Comp, 1990, 54: 545–581

    MathSciNet  MATH  Google Scholar 

  11. Cockburn B, Lin S-Y, Shu C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-dimensional systems. J Comput Phys, 1989, 84: 90–113

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn B, Shu C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General Framework. Math Comp, 1989, 52: 411–435

    MathSciNet  MATH  Google Scholar 

  13. Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn B, Shu C-W. The Runge-Kutta discontinuous Galerkin method for conservation Laws V-Multidimensional systems. J Comput Phys, 1998, 141: 199–224

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn B, Shu C-W. Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems. J Sci Comput, 2002, 16: 173–261

    Article  MathSciNet  Google Scholar 

  16. Jerome J, Shu C-W. Energy models for one-carrier transport in semiconductor devices. In: Coughran W, Cole J, Lloyd P, et al., eds. IMA Volumes in Mathematics and Its Applications, vol. 59. Berlin: Springer-Verlag, 1994, 185–207

    Article  Google Scholar 

  17. Johnson C, Pitkäranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math Comp, 1986, 46: 1–26

    Article  MathSciNet  MATH  Google Scholar 

  18. Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation. In: de Boor C, ed. Mathematical Aspects of Finite Elements in Partial Differential Equations. New York: Academic Press, 1974, 89–145

    Google Scholar 

  19. Liu Y, Shu C-W. Local discontinuous Galerkin methods for moment models in device simulations: Formulation and one dimensional results. J Comput Electronics, 2004, 3: 263–267

    Article  Google Scholar 

  20. Liu Y, Shu C-W. Local discontinuous Galerkin methods for moment models in device simulations: Performance assessment and two-dimensional results. Appl Numer Math, 2007, 57: 629–645

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu Y, Shu C-W. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models. Sci China Math, 2010, 53: 3255–3278

    Article  MathSciNet  MATH  Google Scholar 

  22. Luo J, Shu C-W, Zhang Q. A priori error estimates to smooth solutions of the third order Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws. Math Modelling Num Anal, in press, 2015

    Google Scholar 

  23. Meng X, Shu C-W, Wu B. Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math Comp, in press, 2015

    Google Scholar 

  24. Richter G R. An optimal-order error estimate for the discontinuous Galerkin method. Math Comp, 1988, 50: 75–88

    Article  MathSciNet  MATH  Google Scholar 

  25. Rivière B, Wheeler M F. A discontinuous Galerkin methods applied to nonlinear parabolic equations. In: Cockburn B, Karniadakis G, Shu C-W, eds. Discontinuous Galerkin Methods: Theory, Computation and Application, vol. 11. Lecture Notes in Computational Science and Egnineering. Berlin: Springer, 2000, 231–244

    Chapter  Google Scholar 

  26. Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys, 1988, 77: 439–471

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang H, Shu C-W, Zhang Q. Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J Numer Anal, 2015, 53: 206–227

    Article  MathSciNet  Google Scholar 

  28. Wang H, Shu C-W, Zhang Q. Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl Math Comp, 2015, doi:10.1016/j.amc.2015.02.067

    Google Scholar 

  29. Wang H, Zhang Q. Error estimate on a fully discrete local discontinuous Galerkin method for linear convection-diffusion problem. J Comput Math, 2013, 31: 283–307

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu Y, Shu C-W. Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convectiondiffusion and KdV equations. Comput Methods Appl Mech Engrg, 2007, 196: 3805–3822

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu Y, Shu C-W. Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Comm Comput Phys, 2010, 7: 1–46

    MathSciNet  Google Scholar 

  32. Zhang Q, Shu C-W. Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J Numer Anal, 2004, 42: 641–666

    Article  MathSciNet  Google Scholar 

  33. Zhang Q, Shu C-W. Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for symmetrizable systems of conservation laws. SIAM J Numer Anal, 2006, 44: 1703–1720

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang Q, Shu C-W. Stability analysis and a priori error estimates to the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J Numer Anal, 2010, 48: 1038–1063

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Shu, CW. Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. Sci. China Math. 59, 115–140 (2016). https://doi.org/10.1007/s11425-015-5055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5055-8

Keywords

MSC(2010)

Navigation