Skip to main content
Log in

A conservative local discontinuous Galerkin method for the solution of nonlinear Schrödinger equation in two dimensions

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this study, we present a conservative local discontinuous Galerkin (LDG) method for numerically solving the two-dimensional nonlinear Schr¨odinger (NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor (IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis G, Dougalis V, Karakashian O. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer Math, 1991, 59: 31–53

    Article  MathSciNet  MATH  Google Scholar 

  2. Antoine X, Bao W, Besse C. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput Phys Comm, 2013, 184: 2621–2633

    Article  MATH  Google Scholar 

  3. Bao W, Jaksch D, Markowich P-A. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J Comput Phys, 2003, 187: 318–342

    Article  MathSciNet  MATH  Google Scholar 

  4. Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J Comput Phys, 1997, 131: 267–279

    Article  MathSciNet  MATH  Google Scholar 

  5. Bialynicki-Birula I, Mycielski J. Gaussons: Solitons of the logarithmic Schrödinger equation. Phys Scr, 1979, 20: 539–544

    Article  MATH  Google Scholar 

  6. Castillo P, Cockburn B, Perugia I, et al. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal, 2000, 38: 1676–1706

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang Q, Jia E, Sun W. Difference schemes for solving the generalized nonlinear Schrödinger equation. J Comput Phys, 1999, 148: 397–415

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen S, Zhang Y. Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods. J Comput Phys, 2011, 230: 4336–4352

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiao R-Y, Garmire E, Townes C. Self-trapping of optical beams. Phys Rev Lett, 1964, 73: 479–482

    Article  Google Scholar 

  10. Cockburn B, Shu C-W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal, 1998, 35: 2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  11. Cowan S, Enns R-H, Rangnekar S-S, et al. Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation. Canad J Phys, 1986, 64: 311–315

    Article  Google Scholar 

  12. Dehghan M, Taleei A. A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput Phys Comm, 2010, 181: 43–51

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao Z, Xie S. Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations. Appl Numer Math, 2011, 61: 593–614

    Article  MathSciNet  MATH  Google Scholar 

  14. Gardner L R T, Gardner G A, Zaki S I, et al. B-spline finite element studies of the non-linear Schrödinger equation. Comput Methods Appl Mech Engrg, 1993, 108: 303–318

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong J, Ji L, Liu Z. Optimal error estimates of conservative local discontinuous Galerkin method for nonlinear Schrödinger equation. ArXiv:1609.08853, 2016

    Google Scholar 

  16. Javidi M, Golbabai A. Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning. J Math Anal Appl, 2007, 333: 1119–1127

    Article  MathSciNet  MATH  Google Scholar 

  17. Karakashian O, Akrivis G, Dougalis V. On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J Numer Anal, 1993, 30: 377–400

    Article  MathSciNet  MATH  Google Scholar 

  18. Li X, Zhu J, Zhang R, et al. A combined discontinuous Galerkin method for the dipolar Bose-Einstein condensation. J Comput Phys, 2014, 275: 363–376

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang X, Khaliq A, Xing Y. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun Comput Phys, 2015, 17: 510–541

    Article  MathSciNet  MATH  Google Scholar 

  20. Liao H, Sun Z, Shi H. Maximum norm error analysis of explicit schemes for two-dimensional nonlinear Schrödinger equations (in Chinese). Sci Sin Math, 2010, 40: 827–842

    Google Scholar 

  21. Liu Y, Shu C. Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. Sci China Math, 2016, 59: 115–140

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu W, Huang Y, Liu H. Mass preserving discontinuous Galerkin methods for Schrödinger equations. J Comput Phys, 2015, 282: 210–226

    Article  MathSciNet  MATH  Google Scholar 

  23. Lv Z-Q, Zhang L-M, Wang Y-S. A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation. Chin Phys B, 2014, 23: 120203

    Article  Google Scholar 

  24. Meng X, Shu C, Yang Y. Superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations (in Chinese). Sci Sin Math, 2015, 45: 1041–1060

    Google Scholar 

  25. Merle F. Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Comm Math Phys, 1990, 129: 223–240

    Article  MathSciNet  MATH  Google Scholar 

  26. Merle F, Tsutsumi Y. L2-concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J Differential Equations, 1990, 84: 205–214

    Article  MathSciNet  MATH  Google Scholar 

  27. Nie Q, Zhang Y-T, Zhao R. Efficient semi-implicit schemes for stiff systems. J Comput Phys, 2006, 214: 521–537

    Article  MathSciNet  MATH  Google Scholar 

  28. Peraire J, Persson P-O. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J Sci Comput, 2007, 30: 1806–1824

    Article  MathSciNet  Google Scholar 

  29. Thalhammer M. High-order exponential operator splitting methods for time dependent Schrödinger equations. SIAM J Numer Anal, 2008, 46: 2022–2038

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian Z, Yu P. High-order compact ADI (HOC-ADI) method for solving unsteady 2D Schrödinger equation. Comput Phys Comm, 2010, 181: 861–868

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang T, Zhao X. Optimal l1 error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions. Sci China Math, 2014, 57: 2189–2214

    Article  MathSciNet  MATH  Google Scholar 

  32. Wei J, Yang J. Vortex ring pinning for the gross-pitaevskii equation in three-dimensional space. SIAM J Math Anal, 2012, 44: 210–217

    Article  MathSciNet  MATH  Google Scholar 

  33. Xie S, Li G, Yi S. Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation. Comput Methods Appl Mech Engrg, 2009, 198: 1052–1060

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu Y, Shu C-W. Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J Comput Phys, 2005, 205: 72–77

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu Y, Shu C-W. Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun Comput Phys, 2010, 7: 1–46

    MathSciNet  MATH  Google Scholar 

  36. Xu Y, Zhang L. Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation. Comput Phys Comm, 2012, 183: 1082–1093

    Article  MATH  Google Scholar 

  37. Zhang R, Yu X, Feng T. Numerical solution of coupled nonlinear Schrödinger equation by direct discontinuous Galerkin method. Chin Phys B, 2012, 21: 030202

    Article  Google Scholar 

  38. Zhang R, Yu X, Zhu J, et al. Direct discontinuous Galerkin method for nonlinear reaction-diffusion systems in pattern formation. Appl Math Model, 2014, 36: 1612–1621

    Article  MathSciNet  Google Scholar 

  39. Zhang R, Zhu J, Li X, et al. A Krylov semi-implicit DG method for the computation of ground and excited states in Bose-Einstein condensates. Appl Math Model, 2016, 40: 5096–5110

    Article  MathSciNet  Google Scholar 

  40. Zhang R, Zhu J, Yu X, et al. A conservative spectral collocation method for the nonlinear Schrödinger equation in two dimensions. Appl Math Comput, 2017, 310: 194–203

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of Liaoning Educational Committee (Grant No. L201604) and China Scholarship Council, National Natural Science Foundation of China (Grant Nos. 11571002, 11171281 and 11671044), the Science Foundation of China Academy of Engineering Physics (Grant No. 2015B0101021) and the Defense Industrial Technology Development Program (Grant No. B1520133015). The authors thank the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingJun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Yu, X., Li, M. et al. A conservative local discontinuous Galerkin method for the solution of nonlinear Schrödinger equation in two dimensions. Sci. China Math. 60, 2515–2530 (2017). https://doi.org/10.1007/s11425-016-9118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-9118-x

Keywords

MSC(2010)

Navigation