Skip to main content
Log in

Recent advances of aptamer sensors

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Aptamers are a series of high-affinity and high-specificity oligoneucleotides (single-stranded DNA or RNA) to the target, usually selected by the combinatorial chemistry SELEX technique (systematic evolution of ligands by exponential enrichment). Aptamers have proved to be one kind of novel functional molecules in life science and chemistry. After being labeled by signaling groups, the aptamer probe can conveniently transfer the characteristics of aptamer-target recognition to a form of high-sensitive signal, and the high-affinity, high-specificity measurements of metal ion, organic molecules, nucleic acid, proteins, or cells become possible. This article summarizes the recent advances of aptamer probes in different sensing fields, with special emphasis on aptamer probes as fluorescent sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822

    Article  CAS  Google Scholar 

  2. Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425–1429

    Article  CAS  Google Scholar 

  3. Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res, 1996, 24(6): 1029–1036

    Article  CAS  Google Scholar 

  4. Yang Q, Goldstein I J, Mei H Y, Engelke D R. DNA ligands that bind tightly and selectively to cellobiose. Proc Natl Acad Sci USA, 1998, 95(10): 5462–5467

    Article  CAS  Google Scholar 

  5. Ruckman J, Green L S, Beeson J, Waugh S, Gillette W L, Henninger D D, Claesson-Welsh L, Janjić N. 2-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor(VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem, 1998, 273(32): 20556–20557

    Article  CAS  Google Scholar 

  6. Shangguan D, Li Y, Tang Z, Cao Z C, Chen H W, Mallikaratchy P, Sefah K, Yang C J, Tan W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Soc USA, 2006, 103(32): 11838–11843

    Article  CAS  Google Scholar 

  7. Tang J, Xie J, Shao N, Yan Y. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis, 2006, 27(7): 1303–1311

    Article  CAS  Google Scholar 

  8. Gokulrangan G, Unruh J R, Holub D F, Ingram B, Johnson C K, Wilson G S. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Anal Chem, 2005, 77(7): 1963–1970

    Article  CAS  Google Scholar 

  9. Okazawa A, Maeda H, Fukusaki E, Katakura Y, Kobayashi A. In vitro selection of hematoporphyrin binding DNA aptamers. Bioorg Med Chem Lett, 2000, 10(23): 2653–2656

    Article  CAS  Google Scholar 

  10. Jhaveri S D, Kirby R, Conrad R, Maglott E J, Bowser M, Kennedy R T, Glick G, Ellington A.D. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc, 2000, 122(11): 2469–2473

    Article  CAS  Google Scholar 

  11. Yamana K, Ohtani Y, Nakano H, Saito I. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor. Bioorg Med Chem Lett, 2003, 13(20): 3429–3431

    Article  CAS  Google Scholar 

  12. Merino E J, Weeks K M. Facile conversion of aptamers into sensors using a 2′-ribose-linked fluorophore. J Am Chem Soc, 2005, 127(37): 12766–12767

    Article  CAS  Google Scholar 

  13. Katilius E, Katiliene Z, Woodbury N W. Signaling aptamers created using fluorescent nucleotide analogues. Anal Chem, 2006, 78(18): 6484–6489

    Article  CAS  Google Scholar 

  14. Jiang Y, Fang X, Bai C. Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem, 2004, 76(27): 5230–5235

    Article  CAS  Google Scholar 

  15. Tang J, Yu T, Guo L, Xie J, Shao N, He Z. In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. Biosens Bioelectron, 2007, 22(11): 2456–2463

    Article  CAS  Google Scholar 

  16. Li B, Wei H, Dong S. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chem Commun, 2007, 29(1): 73–75

    Article  CAS  Google Scholar 

  17. Jiang Y, Zhou C, Fang X. Aptamer-based ATP assay using a luminescent light switching complex. Anal Chem, 2005, 77(11): 3542–3546

    Article  CAS  Google Scholar 

  18. Nutiu R, Li Y. Structure-switching signaling aptamers. J Am Chem Soc, 2003, 125(16): 4771–4778

    Article  CAS  Google Scholar 

  19. Nutiu R, Li Y. Aptamers with fluorescence-signaling properties. Methods, 2005, 37(1): 16–25

    Article  CAS  Google Scholar 

  20. Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins. Anal Chem, 2005, 77(4): 1147–1156

    Article  CAS  Google Scholar 

  21. Choi J H, Chen K H, Strano M S. Aptamer-capped nanocrystal quantum dots: A new method for label-free protein detection. J Am Chem Soc, 2006, 128(49): 15584–15585

    Article  CAS  Google Scholar 

  22. Ikanovic M, Rudzinski W E, Bruno J G, Allman A, Carrillo M P, Dwarakanath S, Bhahdigadi S, Rao P, Kiel J L, Andrews C J. Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc, 2007, 17(2): 193–199

    Article  CAS  Google Scholar 

  23. Liu J, Lee J H, Lu Y. Quantum Dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem, 2007, 79(11): 4120–4125

    Article  CAS  Google Scholar 

  24. Yang C J, Jockusch S, Vicens M, Turro N J, Tan W. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl Acad Sci USA, 2005, 102(48): 17278–17283

    Article  CAS  Google Scholar 

  25. Nagatoishi S, Nojima T, Juskowiak B, Takenaka S. A pyrene-labeled G-quadruplex oligonucleotide as a fluorescent probe for potassium ion detection in biological applications. Angew Chem Int Ed, 2005, 44(32): 5067–5070

    Article  CAS  Google Scholar 

  26. Cao Z, Tan W. Molecular aptamers for real-time protein-protein interaction study. Chem Eur J, 2005, 11(15): 4502–4508

    Article  CAS  Google Scholar 

  27. Nutiu R, Yu J M, Li Y. Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. Chem Bio Chem, 2004, 5(8): 1139–1144

    CAS  Google Scholar 

  28. Pavlov V, Shlyahovsky B, Willner I. Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex. J Am Chem Soc, 2005, 127(18): 6522–6523

    Article  CAS  Google Scholar 

  29. Hartig J S, Najafi-Shoushtari S H, Grüne I, Yan A, Ellington A D, Famulok M. Protein-dependent ribozymes report molecular interactions in real time. Nat Biotechnol, 2003, 20(7): 717–722

    Article  CAS  Google Scholar 

  30. Srinivasan J, Cload S T, Hamaguchi N, Kurz J, Keene S, Kurz M, Boomer R M, Blanchard J, Epstein D, Wilson C, Diener J L. ADP-specific sensors enable universal assay of protein kinase activity. Chem Biol, 2004, 11(4): 499–508

    Article  CAS  Google Scholar 

  31. Seetharaman S, Zivarts M, Sudarsan N, Breaker R R. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat Biotechnol, 2001, 19(4): 336–341

    Article  CAS  Google Scholar 

  32. Yang L, Fung C W, Cho E J, Ellington A D. Real-time rolling circle amplification for protein detection. Anal Chem, 2007, 79(9): 3320–3329

    Article  CAS  Google Scholar 

  33. Di Giusto D A, Wlassoff W A, Gooding J J, Messerle B A, King G C. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Res, 2005, 33(6): e64

    Article  Google Scholar 

  34. Cho E J, Yang L, Levy M, Ellington A D. Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc, 2005, 127(7): 2022–2023

    Article  CAS  Google Scholar 

  35. Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I. Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc, 2007, 129(13): 3814–3815

    Article  CAS  Google Scholar 

  36. Huang C C, Huang Y F, Cao Z, Tan W, Chang H T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem, 2005, 77(17): 5735–5741

    Article  CAS  Google Scholar 

  37. Wang L, Liu X, Hu X, Song S, Fan C. Unmodified gold nanoparticles as a colorimetric probefor potassium DNA aptamers. Chem Commun, 2006, 28(36): 3780–3782

    Article  CAS  Google Scholar 

  38. Zhao W, Chiuman W, Brook M A, Li Y. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. Chem Bio Chem, 2007, 8(7): 727–731

    CAS  Google Scholar 

  39. Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed, 2006, 45(1): 90–94

    Article  CAS  Google Scholar 

  40. Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels-selective targeting of endothelial regulatory protein pigpen. J Biol Chem, 2001, 276(19): 16464–16468

    Article  CAS  Google Scholar 

  41. Smith J E, Medley C D, Tang Z, Shangguan D, Lofton C, Tan W. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem, 2007, 79(8): 3075–3082

    Article  CAS  Google Scholar 

  42. Lupold S E, Hicke B J, Lin Y, Coffey D S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res, 2002, 62(14): 4029–4033

    CAS  Google Scholar 

  43. Chu T C, Shieh F, Lavery L A, Levy M, Richards-Kortum R, Korgel B A, Ellington A D. Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron, 2006, 21(10): 1859–1866

    Article  CAS  Google Scholar 

  44. Farokhzad O C, Jon S, Khademhosseini A, Tran T T, LaVan D A, Langer R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res, 2004, 64(21): 7668–7672

    Article  CAS  Google Scholar 

  45. Farokhzad O C, Cheng J, Teply B A, Sherifi I, Jon S, Kantoff P W, Richie J P, Langer R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA, 2006, 103(16): 6315–6320

    Article  CAS  Google Scholar 

  46. Cheng J, Teply B A, Sherifi I, Sung J, Luther G, Gu F X, Levy-Nissenbaum E, Radovic-Moreno A F, Langer R, Farokhzad O C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5): 869–876

    Article  CAS  Google Scholar 

  47. Baker B R, Lai R Y, Wood M S, Doctor E H, Heeger A J, Plaxco K W. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc, 2006, 128(10): 3138–3139

    Article  CAS  Google Scholar 

  48. Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem, 2007, 79(1): 229–233

    Article  CAS  Google Scholar 

  49. Wu Z, Guo M, Zhang S, Chen C, Jiang J, Shen G, Yu R. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem, 2007, 79(7): 2933–2939

    Article  CAS  Google Scholar 

  50. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc, 2007, 129(5): 1042–1043

    Article  CAS  Google Scholar 

  51. Hansen J A, Wang J, Kawde A, Xiang Y, Gothelf K V, Collins G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc, 2006, 128(7): 2228–2229

    Article  CAS  Google Scholar 

  52. Centi S, Tombelli S, Minunni M, Mascini M. Aptamer-based detec tion of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem, 2007, 79(4): 1466–1473

    Article  CAS  Google Scholar 

  53. Polsky R, Gill R, Kaganovsky L, Willner I. Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem, 2006, 78(7): 2268–2271

    Article  CAS  Google Scholar 

  54. Le Floch F, Ho H A, Leclerc M. Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Anal Chem, 2006, 78(13): 4727–4731

    Article  CAS  Google Scholar 

  55. Ho H A, Doré K, Boissinot M, Bergeron M G, Tanguay R M, Boudreau D, Leclerc M. Direct molecular detection of nucleic acids by fluorescence signal amplification. J Am Chem Soc, 2005, 127(36): 12673–12676

    Article  CAS  Google Scholar 

  56. Xu D, Xu D, Yu X, Liu Z, he W, Ma Z. Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem, 2005, 77(16): 5107–5113

    Article  CAS  Google Scholar 

  57. Radi A, Acero Sánchez J L, Baldrich E, O’sullivan C K. Reusable impedimetric aptasensor. Anal Chem, 2005, 77(19): 6320–6323

    Article  CAS  Google Scholar 

  58. Zayats M, Huang Y, Gill R, Ma C, Willner I. Label-free and reagentless aptamer-based sensors for small molecules. J Am Chem Soc, 2006, 128(42): 13666–13667

    Article  CAS  Google Scholar 

  59. Willner I, Zayats M. Electronic aptamer-based sensors. Angew Chem Int Ed, 2007, 46(34): 6408–6418

    Article  CAS  Google Scholar 

  60. Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron, 2004, 20(6): 1149–1156

    Article  CAS  Google Scholar 

  61. Schlensog M D, Gronewold T M A, Tewes M, Famulok M, Quandt E. A love-wave biosensor using nucleic acids as ligands. Sens Actuators B, 2004, 101(3): 308–315

    Article  CAS  Google Scholar 

  62. Win M N, Klein J S, Smolke C D. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res., 2006, 34(19): 5670–5682

    Article  CAS  Google Scholar 

  63. Li Y, Lee H J, Corn R M. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem, 2007, 79(3): 1082–1088

    Article  CAS  Google Scholar 

  64. Wlotzka B, Leva S, Eschgfäller B, Burmeister J, Kleinjung F, Kaduk C, Muhn P, Hess-Stumpp H, Klussmann S. In vivo properties of an anti-GnRH spiegelmer: An example of an oligonucleotide-based therapeutic substance class. Proc Natl Acad Sci USA, 2002, 99(13): 8898–8902

    Article  CAS  Google Scholar 

  65. Stoltenburg R, Reinemann C, Strehlitz B. SELEX-A (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng, 2007, 24(4): 381–403

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo Lei or Xie JianWei.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20575078 and 20705039)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Guo, L., Zhang, Z. et al. Recent advances of aptamer sensors. Sci. China Ser. B-Chem. 51, 193–204 (2008). https://doi.org/10.1007/s11426-008-0001-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0001-z

Keywords

Navigation