Skip to main content
Log in

PdCl2-catalyzed heterocyclotrimerization in MeOH/scCO2: A versatile approach to dimethyl pyridine-3,5-dicarboxylate from methyl acrylate and urea

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A novel and green method for the synthesis of dimethyl pyridine-3,5-dicarboxylate has been developed. It is PdCl2-catalyzed heterocyclotrimerization of methyl acrylate with urea in methanol/supercritical carbon dioxide. The target compound was obtained with a 75% isolated yield under the optimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park J S, Yeom C E, Choi S H, Ahn Y S, Ro S, Jeon Y Ho, Shin D K, Kim B M. An efficient synthesis of 3(S)-aminopiperidine-5(R)-carboxylic acid as a cyclic β,γ′-diamino acid. Tetrahedron Lett, 2003, 44(8): 1611–1614

    Article  CAS  Google Scholar 

  2. Bennasar M L, Zulaica E, Roca T, Alonso Y, Monerris M. A synthetic entry to 3,5-disubstituted pyridines. Tetrahedron Lett, 2003, 44(25): 4711–4714

    Article  CAS  Google Scholar 

  3. Collman J P, Decreau R A, Costanzo S. Appending a tris-imidazole ligand with a Tyr244 mimic on the distal face of bromoacetamidoporphyrin. Organic Lett, 2004, 6: 1033–1036

    Article  CAS  Google Scholar 

  4. Simona V, Pierre G P. Linear multinuclear RuII photosensitizers. Eur J Inorg Chem, 2004, 8: 1763–1769

    Google Scholar 

  5. Wang Z Y, Jiang H F, Ouyang X Y, Qi C R, Yang S R. Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism. Tetrahedron, 2006, 62(42): 9846–9854

    Article  CAS  Google Scholar 

  6. Jiang H F, Shen Y X, Wang Z Y. A simple PdCl2/O2/DMF catalytic system for highly regioselective cyclotrimerization of olefins with electron-withdrawing groups. Tetrahedron Lett, 2007, 48(42): 7542–7545

    Article  CAS  Google Scholar 

  7. Jiang H F, Shen Y X, Wang Z Y. Palladium catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in scCO2. Tetrahedron, 2008, 64(3): 508–514

    Article  CAS  Google Scholar 

  8. Jessop P G, Ikariya T, Noyori R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, 1994, 368: 231–236

    Article  CAS  Google Scholar 

  9. Burk M J, Feng S, Gross M F, Tumas W. Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J Am Chem Soc, 1995, 117: 8277–8278

    Article  CAS  Google Scholar 

  10. Du Y, Cai F, Kong D L, He L N. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem. 2005, 7: 518–523

    Article  CAS  Google Scholar 

  11. Jia L Q, Jiang H F, Li J H. Palladium(II)-catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide. Chem Commun, 1999, 985–986

  12. Wang Z Y, Jiang H F, Qi C R, Wang Y G, Dong Y S, Liu H L. PS-BQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide. Green Chem, 2005, 7: 582–585

    Article  CAS  Google Scholar 

  13. Kayaki Y, Noguchi Y, Ikariya T. Enhanced product selectivity in the Mizoroki-Heck reaction using a supercritical carbon dioxide-liquid biphasic system. Chem Commun, 2000, 2245–2246

  14. Fujita S, Fujisawa S, Bhanage B M, Ikushim Y, Arai M. Hydroformylation of 1-hexene catalyzed with rhodium fluorinatedphosphine complexes in supercritical carbon dioxide and inconventional organic solvents: effects of ligands and pressures. New J Chem, 2002, 26: 1479–1484

    Article  CAS  Google Scholar 

  15. Li J H, Jiang H F, Chen M C. Respective conversion of n-butylamine to methyl N-n-butylcarbamate and oxalbutyline in supercritical carbon dioxide. Green Chem, 2001, 3: 137–139

    Article  CAS  Google Scholar 

  16. Cheng J S, Jiang H F. Palladium-catalyzed regioselective cyclotrimerization of acetylenes in supercritical carbon dioxide. Eur J Org Chem, 2004, 643–646

  17. Tkatchenko D B, Picquet M, Solinas M, Franciò G, Wasserscheidc P, Leitnerbc W. Acrylate dimerisation under ionic liquid-supercritical carbon dioxide conditions. Green Chem, 2003, 5: 232–235

    Article  CAS  Google Scholar 

  18. Hao J Y, Whitaker M J, Serhatkulu G, Shakesheff K M, Howdle S M. Supercritical fluid assisted melting of poly(ethylene glycol): a new solvent free route to microparticles. J Mater Chem, 2005, 15, 1148–1153

    Article  CAS  Google Scholar 

  19. Li J H, Jiang H F, Jia L Q. Glasser coupling reaction in supercritical carbon dioxide. Chem Comm, 1999, 2369–2370

  20. Baiker A. Supercritical fluids in heterogeneous catalysis. Chem Rev, 1999, 99: 453–473

    Article  CAS  Google Scholar 

  21. Jawwad A D, Martyn P. New directions in inorganic and metalorganic coordination chemistry in supercritical fluids. Chem Rev, 1999, 99: 495–541

    Article  Google Scholar 

  22. Yee G G, Fulton J L, Smith R D. Fourier transform infrared spectroscopy of molecular interactions of heptafluoro-1-butanol or 1-butanol in supercritical carbon dioxide and supercritical ethane. J Phys Chem, 1992, 96: 6172–6181

    Article  CAS  Google Scholar 

  23. Wu W Z, Zhang J M, Han B X, Chen J W, Liu Z M, Jiang T, He J, Li W J. Solubility of room-temperature ionic liquid in supercritical CO2 with and without organic compounds. Chem Comm, 2003, 1412–1413

  24. Fulton J L, Yee G G, Smith R D. Hydrogen bonding of methyl alcohol-d in supercritical carbon dioxide and supercritical ethane solutions. J Am Chem Soc, 1991, 113(3): 8327–8334

    Article  CAS  Google Scholar 

  25. Kazarian S G, Gupta R B, Clarke M J, Johnston K P, Poliakoff M. How is hydrogen-bonding influenced by solvent density: The spectroscopic study and modeling of the interaction between a proton donor and acceptor from the gas phase to supercritical fluid states. J Am Chem Soc, 1993, 115: 11099–11109

    Article  CAS  Google Scholar 

  26. O’shea K E, Kirmse K M, Fox M A, Johnston K E. Polar and hydrogen-bonding interactions in supercritical fluids: Effects on the tautomeric equilibrium of 4-(phenylazo)-1-naphthol. J Phys Chem, 1991, 95: 7863–7867

    Article  CAS  Google Scholar 

  27. Stahl S S. Palladium oxidase catalysis: Selective oxidations of organic chemicals by direct dioxygen-coupled turnover. Ang Chem Int Ed, 2004, 43: 3400–3420

    Article  CAS  Google Scholar 

  28. Wang J R, Deng W, Wang Y F, Liu L, Guo Q X. New advances in palladium-catalyzed aerobic oxidations. Chin J Org Chem, 2006, 26: 397–412

    Google Scholar 

  29. Cherbuliez E, Landolt F. The acidolysis of amides. I. The acidolysis of amides of carboxylic acids, a new general method for the preparation of amides. Helv Chim Acta, 1946, 29: 1438–1446

    Article  CAS  Google Scholar 

  30. Solodovnikov V V, Selemeneva Z I, Strel’tsova S I, Bazakin V I, Kirichenko V P, Platonova V N, Berezina L N. Perfection of technology for commercial production of formamide. 1. Intensification and perfection of formamide production. Vopr Khim Khimich Tekhnol, 1988, 87: 117–122

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuanFeng Jiang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20332030, 20572027, 20625205 and 20772034) and Guangdong Natural Science Foundation (Grant No. 07118070)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, B., Jiang, H. PdCl2-catalyzed heterocyclotrimerization in MeOH/scCO2: A versatile approach to dimethyl pyridine-3,5-dicarboxylate from methyl acrylate and urea. Sci. China Ser. B-Chem. 51, 447–451 (2008). https://doi.org/10.1007/s11426-008-0055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0055-y

Keywords

Navigation