Skip to main content
Log in

Simultaneous kinetic spectrophotometric determination of norfloxacin and rifampicin in pharmaceutical formulation and human urine samples by use of chemometrics approaches

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A kinetic spectrophotometric method with aid of chemometrics is proposed for the simultaneous determination of norfloxacin and rifampicin in mixtures. The proposed method was applied for the simultaneous determination of these two compounds in pharmaceutical formulation and human urine samples, and the results obtained are similar to those obtained by high performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith J T. Awakening the slumbering potential of the 4-quinolone antibacterials. Pharm J, 1984, 233(15): 299–305

    CAS  Google Scholar 

  2. Grohe K. Antibiotics the new generation. Chem Br, 1992, 28(1): 34–36

    Google Scholar 

  3. Japan Pharmaceutical. Medical and Dental Supply Exporters’ Association (ed), Japan pharmaceutical reference, Tokyo, 1991, 279–282

    Google Scholar 

  4. Hilman A G, Rall T, Nier A, Taylor P. The Pharmacological Basis of Therapeutics. New York: McGraw-Hill, 1996

    Google Scholar 

  5. Deng B Y, Su C N, Kang Y H. Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection. Anal Bioanal Chem, 2006, 385(7): 1336–1341

    Article  CAS  Google Scholar 

  6. Huang Z Y, Cai R X, Zhang K, Huang H P, Zeng Y E. Micelle enhanced spectrofluorimetric determination of norfloxacin using terbium as fluorescent probe. Anal Lett, 1997, 30(8): 1531–1539

    CAS  Google Scholar 

  7. Lim J, Park B, Yun H. Sensitive liquid chromatographic-mass spectrometric assay for norfloxacin in poultry tissue. J Chromatogr B, 2002, 772(1): 185–189

    Article  CAS  Google Scholar 

  8. Nageswara R R, Nagaraju V. Separation and determination of synthetic impurities of norfloxacin by reversed-phase high performance liquid chromatography. J Pharm Biomed Anal, 2004, 34(5): 1049–1056

    Article  Google Scholar 

  9. Allanson A L, Cotton M M, Tettey J N A, Boyter A C. Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring. J Pharm Biomed Anal, 2007, 44(4): 963–969

    Article  CAS  Google Scholar 

  10. Al-Majed A A, Belal F, Al-Warthan A A. Spectrophotometric determination of ramipril (a novel ACE inhibitor) in dosage forms. Spectrosc Lett, 2001, 34(2): 211–220

    Article  CAS  Google Scholar 

  11. Abdallatef H E, Ayad M M, Taha E A J. Spectrophotometric and atomic absorption spectrometric determination of ramipril and perindopril through ternary complex formation with eosin and Cu(II). J Pharm Biomed Anal, 1999, 18(6): 1021–1027

    Article  Google Scholar 

  12. Rahman N, Khan N A, Azmi S N H. Kinetic spectrophotometric method for the determination of silymarin in pharmaceutical formulations using potassium permanganate as oxidant. Pharmazie, 2004, 59(2); 112-116

    Google Scholar 

  13. Rahman N, Ahmad Y, Azmi S N H. Kinetic spectrophotometric method for the determination of norfloxacin in pharmaceutical formulations. Eur J Pharm Biopharm, 2004, 57(2): 359–367

    Article  CAS  Google Scholar 

  14. Ni Y N, Wang Y. Application of chemometric methods to the simultaneous kinetic spectrophotometric determination of iodate and periodate based on consecutive reactions. Microchem J, 2007, 86(2): 216–226

    Article  CAS  Google Scholar 

  15. Harvey D, Modern Analytical Chemistry, New York: McGraw-Hill, 2000

    Google Scholar 

  16. Kalman R E. A new approach to linear filtering and prediction problem. J Basic Eng, 1960, 82: 35–45

    Google Scholar 

  17. Rutan S C, Bouveresse E, Andrew K N, Worsfold P J, Massart D L. Correction for drift in multivariate systems using the Kalman filter. Chemmetr Intell Lab Syst, 1996, 35(2): 199–211

    Article  CAS  Google Scholar 

  18. Rutan S C, Fast on-line digital filtering. Chemometr Intell Lab Syst, 1989, 6(3): 191–201

    Article  Google Scholar 

  19. Geladi P, Kowalski B R. Partial least-squares regression: a tutorial. Anal Chim Acta, 1986, 185: 1–17

    Article  CAS  Google Scholar 

  20. Haaland D M, Thomas E V, Partial least-squares methods for spectral analyses. 1. relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem, 1988, 60(11): 1193–1202

    Article  CAS  Google Scholar 

  21. Ni Y N, Wang Y, Kokot S. Application of multivariate calibration methods for the simultaneous multiwavelength spectrophotometric determination of Fe(II), Cu(II), Zn(II), and Mn(II) in mixtures. Anal Lett, 2007, 40(6): 1209–1226

    Article  CAS  Google Scholar 

  22. Zupan J, Gasteiger J. Neural networks: a new method for solving chemical problems or just a passing phase? Anal Chim Acta, 1991, 248(1); 1–30

    Article  CAS  Google Scholar 

  23. Kateman G. Neural networks in analytical chemistry? Chemom Intel Lab Syst, 1993, 19(2): 135–142

    Article  CAS  Google Scholar 

  24. Akhlaghi Y, Kompany-Zareh M, Comparing radial basis function and feed-forward neural networks assisted by linear discrimination or principal component analysis for simultaneous spectrophotometric quantification of mercury and copper. Anal Chim Acta 2005, 537(1–2): 331–338

    Article  CAS  Google Scholar 

  25. Derks E P P A, Sanchez Pastor M S, Buydens L M C. Robustness analysis of radial base function and multi-layered feed-forward neural network models. Chemom Intel Lab Syst, 1995, 28(1): 49–60

    Article  CAS  Google Scholar 

  26. Smilde A K, Tauler R, Saurina J, Bro R. Calibration methods for complex second-order data. Anal Chim Acta, 1999, 398(2–3): 237–251

    Article  CAS  Google Scholar 

  27. Ni Y N, Huang C F, Kokot S. Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectro-photometric determination of carbamate pesticides. Chemom Intell Lab Syst, 2004, 71(2): 177–193

    Article  CAS  Google Scholar 

  28. Bro R. Multiway analysis in the food Industry: Models, algorithms and applications, Doctoral dissertation, University of Amsterdam, Amsterdam, 1998

    Google Scholar 

  29. Vandeginste B G M, Massart D L, Buydens L M C, De Jong S, Lewi P J, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics B. Amsterdam: Elsevier, 1998

    Google Scholar 

  30. Ghasemi J, Niazi A. Two-and three-way chemometrics methods applied for spectrophotometric determination of lorazepam in pharmaceutical formulations and biological fluids. Anal Chim Acta, 2005, 533(2): 167–177

    Article  Google Scholar 

  31. Pistonesi M, Centurion M E, Fernandez Band B S, Damiani P C, Olivieri A C. Simultaneous determination of levodopa and benserazide by stopped-flow injection analysis and three-way multivariate calibration of kinetic-spectrophotometric data. J Pharm Biomed Anal, 2004, 36(3): 541–547

    Article  CAS  Google Scholar 

  32. Anderson C A, Bro R. The N-way toolbox for MATLAB. Chemom Intell Lab Syst, 2000, 52(1): 1–4

    Article  Google Scholar 

  33. Smilde A K, Tauler R, Henshaw J M, Burgess L W, Kowalski B R. Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 3. medium-rank 2nd-order calibration with restricted tucker models. Anal Chem, 1994, 66(20): 3345–3351

    Article  CAS  Google Scholar 

  34. Vogel A I. A Textbook of Qualitative Inorganic Analysis. 4th Ed, ELBS, New York: Longman, 1978

    Google Scholar 

  35. Carrington A, Symons M C R. Structure and reactivity of the oxy-anions of transition metals. 1. the manganese oxy-anions. J Chem Soc, 1956, 3373–3380

  36. Ni Y N. Application of Chemometrics in Analytical Chemistry. Beijing: Chinese Science Press, 2004

    Google Scholar 

  37. Stewart R. in Oxidation in Organic Chemistry, K.B. Wiberg, Ed., New York: Academic Part A, 1965

    Google Scholar 

  38. Khairou K S. Spectrophotometric evidence for the formation of short-lived Mn(VI) as transient species intermediate during the permanganate oxidation of chitin and chitosan polysaccharides in alkaline solutions. Spectrosc Lett, 2001, 34(6): 721–728

    Article  CAS  Google Scholar 

  39. Miller J N. Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst, 1991, 116(1): 3–14

    CAS  Google Scholar 

  40. Esteves da Silva J C G, Oliveira C J S. Parafac decomposition of three-way kinetic-spectrophotometric spectral matrices corresponding to mixtures of heavy metal ions. Talanta, 1999, 49(4); 889-897

    Google Scholar 

  41. Horwitz W. Evaluation of analytical methods used for regulation of foods and drugs. Anal Chem, 1982, 54(1): 67A–76A

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongNian Ni.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20562009), Opening Fund from the State Key Lab of Chemo/Biosensing and Chemometrics (Hunan University) (Grant No. 2005-22), Jiangxi Province Natural Science Foundation (Grant No. 0620041) and Program for Changjiang Scholars and Innovative Research Team in Universities (Grant No. IRT0540)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ni, Y. & Kokot, S. Simultaneous kinetic spectrophotometric determination of norfloxacin and rifampicin in pharmaceutical formulation and human urine samples by use of chemometrics approaches. Sci. China Ser. B-Chem. 51, 776–785 (2008). https://doi.org/10.1007/s11426-008-0083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0083-7

Keywords

Navigation