Skip to main content
Log in

Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An intensive field campaign including measurements from the environmental monitoring network and from two super sites took place in the Pearl River Delta region in summer 2006. Using routinely measured O3 and NOx concentrations, the spatial and temporal variation of O3 and of the total oxidant concentrations was characterized. According to the spatial variability of NO2/NO, the two super sites were found to be representative of polluted urban and downwind suburban conditions. In addition, both sites were located in high O3 regions. In-depth diagnostic of photochemical ozone production processes and their key controlling factors are achieved with an observation-based model (OBM) to gain regional perspectives. Budget analysis and sensitivity model runs show that aldehyde and HONO chemistry had significant impacts on local photochemical ozone production rates. The analysis of calculated Relative Incremental Reactivities shows that photochemical ozone production rates are mainly sensitive to anthropogenic hydrocarbons (HCs) in the polluted urban areas. In the suburban areas, sensitivity to nitrogen oxide (NO) concentrations dominated. Key anthropogenic HCs in both areas are alkenes and aromatics. Significant differences of ozone production efficiencies are identified between the urban and suburban regions, consistent with the OBM diagnosed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haagen-Smit AJ. Chemistry and physiology of Log Angeles smog. Ind Eng Chem Res, 1952, 44(6): 1342

    Article  CAS  Google Scholar 

  2. Liu SC. Possible effects on tropospheric O3 and OH due to NO emissions. Geophys Res Lett, 1977, 4(8): 325–328

    Article  CAS  Google Scholar 

  3. Chameide W, Walker JCG. Photochemical theory of tropospheric ozone. J Geophys Res, 1973, 78(36): 8751–8760

    Article  Google Scholar 

  4. Hidy GM. Ozone process insights from field experiments Part I: Overview. Atmos Environ, 2000, 34(12–14): 2001–2022

    Article  CAS  Google Scholar 

  5. Kleinman LI, Daum PH, Lee YN, Nunnermacker LJ, Springston SR, Weinstein-Lloyd J, Rudolph J. A comparative study of ozone production in five U. S. metropolitan areas. J Geophys Res, 2005, 110(D2): 301–321

    Article  CAS  Google Scholar 

  6. Kleinman LI, Daum PH, Imre D, Lee YN, Nunnermacker LJ, Springston SR, Weinstein-Lloyd J, Rudolph J. Ozone production rate and hydrocarbon reactivity in 5 urban areas: a cause of high ozone concentration in Houston. Geophys Res Lett, 2002, 29(10): 1051–1054

    Article  CAS  Google Scholar 

  7. Kanaya Y, Fukuda M, Akimoto H, Takegawa N, Komazaki Y, Yokouchi Y, Koike M, Kondo Y. Urban photochemistry in central Tokyo: 2. rates and regimes of oxidant (O3 + NO2) production. J Geophys Res, 2008, 113(D06): 321–335

    Google Scholar 

  8. Zhang YH, Shao KS, Tang XY. Photochemical pollution in Chinese cites. Acta Scientiarum Naturalium Universitatis Pekinensis, 1998, 34(2–3): 392–400

    CAS  Google Scholar 

  9. Zhang YH, Hu M, Zhong LJ, Wiedensohler A, Liu SC, Andreae MO, Wang W, Fan SJ. Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): overview. Atmos Environ, 2008, 42(25): 6157–6173

    Article  CAS  Google Scholar 

  10. Shao M, Tang XY, Zhang YH, Li W. City clusters in China: air and surface water pollution. Front Ecol Environ, 2006, 4: 353–361

    Article  Google Scholar 

  11. Wang XS, Li JL, Zhang YH, Xie SD, Tang XY. Ozone source apportionment in Beijing areas. Sci China Ser B-Chem, 2009, 39(6): 548–599

    Google Scholar 

  12. Wang T, Ding AJ, Gao J, Wu WS. Strong ozone production in urban plumes from Beijing, China. Geophys Res Lett, 2006, 33(21): 806–811

    Article  CAS  Google Scholar 

  13. Zhang YH, Su H, Zhong LJ, Cheng YF, Zeng LM, Wang XS, Xiang YR, Wang JL, Gao DF, Shao M, Fan SJ, Liu SC. Regional ozone pollution and observation-based approach for analyzing ozoneprecursor relationship during the PRIDE-PRD2004 campaign. Atmos Environ, 2008, 42(25): 6203–6218

    Article  CAS  Google Scholar 

  14. Zhang J, Wang T, Chameides WL, Cardelino C, Kwok J, Blake DR, Ding A, So KL. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China. Atmos Chem and Phys, 2007, 7: 557–573

    CAS  Google Scholar 

  15. Xu J, Zhang YH, Wang W. Numerical study on the impacts of heterogeneous reactions on ozone formation in the Beijing urban area. Adv Atmos Sci, 2006, 23(4): 605–614

    Article  CAS  Google Scholar 

  16. Wang XS, Li JL. The contribution of anthropogenic hydrocarbons to ozone formation in Beijing areas. China Environ Sci, 2002, 22(6): 501–505

    CAS  Google Scholar 

  17. Tang WY, Zhao CS, Gen FH, Peng L, Zhou GQ, Gao W, Xu JM, Tie X. Research of weekend ozone effect in Shanghai areas. Sci China Ser D, 2009, 39(1): 99–105

    Google Scholar 

  18. Hu JL, Zhang YH. Process analysis of ozone formation in the Yangtze River Delta. Res Environ Sci, 2005, 18(2): 13–18

    Google Scholar 

  19. Zhao CS, Peng L, Sun AD, Qin Y, Liu HL, Li WL, Zhou XJ. Numerical modeling of tropospheric ozone over Yangtze Delta region. Acta Scientiae Circumstance, 2004, 24(3): 525–564

    CAS  Google Scholar 

  20. Kleinman LI. Ozone process insights from field experiments-part II: Observation-based analysis for ozone production. Atmos Environ, 2000, 34(12–14): 2023–2033

    Article  CAS  Google Scholar 

  21. Wang JL, Wang CH, Lai CH, Chang CC, Liu Y, Zhang YH, Liu S, Shao M. Characterization of ozone precursors in the Pearl River Delta by time series observation of non-methane hydrocarbons. Atmos Environ, 2008, 42(25): 6233–6246

    Article  CAS  Google Scholar 

  22. Xie X, Shao M, Liu Y, Lu SH, Chang CC, Chen ZM. Estimate of initial isoprene contribution to ozone formation potential in Beijing, China. Atmos Environ, 2008, 42(24): 6000–6010

    Article  CAS  Google Scholar 

  23. Kleffmann J, Heland J, Kurtenbach R, Lorzer J, Wiesen P. A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ Sci Pollut R, 2002, 48–54

  24. Su H, Cheng YF, Shao M, Gao DF, Yu ZY, Zeng LM, Slanina J, Zhang YH, Wiedensohler A. Nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China. J Geophys Res, 2008, 113(D14): 312–221

    Article  CAS  Google Scholar 

  25. Bohn B, Corlett GK, Gillmann M, Sanghavi S, Stange G, Tensing E, Vrekoussis M, Bloss WJ, Clapp LJ, Kortner M, Dorn HP, Monks PS, Platt U, Plass-Dlmer C, Mihalopoulos N, Heard DE, Clemitshaw KC, Meixner FX, Prevot ASH, Schmitt R. Photolysis frequency measurement techniques: results of a comparison within the ACCENT project. Atmos Chem Phys, 2008, 8(17): 5373–5391

    Article  CAS  Google Scholar 

  26. Tang XY, Zhang YH, Shao M. Atmospheric Environmental Chemistry. Beijing: Higher education Press, 2006. 232–242

    Google Scholar 

  27. Cardelino CA, Chameides WL. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere. J Air Waste Manage, 1995, 45(3): 161–180

    CAS  Google Scholar 

  28. Gery MW, Whitten GZ, Killus JP, Dodge MC. A photochemical kinetics mechanism for urban and regional scale computer modeling. J Geophys Res, 1989, 94(D10): 12925–12956

    Article  CAS  Google Scholar 

  29. Lo JCF, Lau AKH, Fung JCH, Chen F. Investigation of enhanced cross-city transport and trapping of air pollutants by coastal and urban land-sea breeze circulations. J Geophys Res, 2006, 111(D14): 104–117

    Article  CAS  Google Scholar 

  30. Zhou W, Wang XS, Zhang YH, Su H, Lu KD. Current status of nitrogen oxides related pollution in China and integrated control strategy. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(2): 323–330

    CAS  Google Scholar 

  31. Shiu CJ, Liu SC, Chang CC, Chen JP, Chou CCK, Lin CY, Young CY. Photochemical production of ozone and control strategy for Southern Taiwan. Atmos Environ, 2007, 41(40): 9324–9340

    Article  CAS  Google Scholar 

  32. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II-gas phase reactions of organic species. Atmos Chem and Phys, 2006, 6: 3625–4055

    Article  CAS  Google Scholar 

  33. Shirley TR, Brune WH, Ren X, Mao J, Lesher R, Cardenas B, Volkamer R, Molina LT, Molina MJ, Lamb B, Velasco E, Jobson T, Alexander M. Atmospheric oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003. Atmos Chem and Phys, 2006, 6: 2753–27

    Google Scholar 

  34. Martinez M, Harder H, Kovacs TA, Simpas JB, Bassis J, Lesher R, Brune WH, Frost GJ, Williams EJ, Stroud CA, Jobson BT, Roberts JM, Hall SR, Shetter RE, Wert B, Fried A, Alicke B, Stutz J, Young VL, White AB, Zamora RJ. OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999. J Geophys Res, 2003, 108(D19): 81–98

    Article  CAS  Google Scholar 

  35. Su H, Cheng YF, Cheng P, Zhang YH, Dong SF, Zeng LM, Wang XS, Slanina J, Shao M, Wiedensohler A. Observation of nighttime nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in China. Atmos Environ, 2008, 42(25): 6219–6232

    Article  CAS  Google Scholar 

  36. Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A. Daytime formation of nitrous acid: a major source of OH radicals in a forest. Geophys Res Lett, 2005, 32(5): 818–822

    Article  CAS  Google Scholar 

  37. Alicke B, Geyer A, Hofzumahaus A, Holland F, Konrad S, Patz HW, Schafer J, Stutz J, Volz-Thomas A, Platt U. OH formation by HONO photolysis during the BERLIOZ experiment. J Geophys Res, 2003, 108(D4): 31–48

    Article  CAS  Google Scholar 

  38. Ren XR, Harder H, Martinez M, Lesher RL, Oliger A, Simpas JB, Brune W H, Schwab J J, Demerjian K L, He Y, Zhou X L, Gao H G. OH and HO2 chemistry in the urban atmosphere of New York City. Atmos Environ, 2003, 37(26): 3639–3651

    Article  CAS  Google Scholar 

  39. Kleffmann J. Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. Chem phys chem, 2007, 8(8): 1137–1144

    CAS  Google Scholar 

  40. Lammel G, Cape JN. Nitrous acid and nitrite in the atmosphere. Chem Soc Rev, 1996, 25(5): 361–382

    Article  CAS  Google Scholar 

  41. Sarwar G, Roselle SJ, Mathur R, Appel W, Dennis RL, Vogel B. A comparison of CMAQ HONO predictions with observations from the northeast oxidant and particle study. Atmos Environ, 2008, 42(23): 5760–5770

    Article  CAS  Google Scholar 

  42. Liu Y, Shao M, Lu SH, Chang CC, Wang JL, Fu LL. Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II. Atmos Environ, 2008, 42(25): 6261–6274

    Article  CAS  Google Scholar 

  43. Carter WPL, Atkinson R. An experimental-study of incremental hydrocarbon reactivity. Environ Sci Technol, 1987, 21(7): 670–679

    Article  CAS  Google Scholar 

  44. Liu SC, Trainer M, Fehsenfeld FC, Parrish DD, Williams EJ, Fahey DW, Hubler G, Murphy PC. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J Geophys Res, 1987, 92(D4): 4191–4207

    Article  CAS  Google Scholar 

  45. Trainer M, Parrish DD, Goldan PD, Roberts J, Fehsenfeld FC. Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmos Environ, 2000, 34(12–14): 2045–2061

    Article  CAS  Google Scholar 

  46. Sillman S. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J Geophys Res, 1995, 100(D7): 14175–14188

    Article  Google Scholar 

  47. Chou CCK, Tsai CY, Shiu CJ, Liu SC, Zhu T. Measurement of NOy during campaign of air quality research in Beijing 2006 (CAREBeijing-2006): implications for the ozone production efficiency of NOx. J Geophys Res, 2009: 114–126

  48. Cardelino CA, Chameides WL. The application of data from photochemical assessment monitoring stations to the observation-based model. Atmos Environ, 2000, 34(12–14): 2325–2332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanHang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, K., Zhang, Y., Su, H. et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time. Sci. China Chem. 53, 651–663 (2010). https://doi.org/10.1007/s11426-010-0055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0055-6

Keywords

Navigation