Skip to main content
Log in

Kumada chain-growth polycondensation as a universal method for synthesis of well-defined conjugated polymers

  • Reviews
  • Special Topic Advances in Principles of Polymerization
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Kumada chain-growth polycondensation (KCGP) is a novel method for the synthesis of well-defined conjugated polymers. Because the Ni-catalyst can transfer in an intramolecular process to the propagating chain end, the polymerization follows chain-growth mechanism. With this newly developed method, various conjugated polymers, such as polythiophenes, poly(p-phenylene) (PPP), polypyrrole (PPy), and polyfluorene with controlled molecular weights and relatively narrow polydispersities (PDIs), have been prepared. Especially, the polymerizations for poly(3-alkylthiophene)s (P3ATs), PPP, and PPy exhibited quasi-living characteristics, which allows preparing polymer brushes, fully-conjugated block copolymers, and macroinitiators and macro-reactants for the synthesis of rod-coil block copolymers. In the current review, the progress in this new area is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Syn-thesis of light-emitting conjugated polymers for applications in elec-troluminescent devices. Chem Rev, 2009, 109: 897–1091

    Article  CAS  Google Scholar 

  2. Allard S, Forster M, Souharce B, Thiem H, Scherf U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed, 2008, 47: 4070–4098

    Article  CAS  Google Scholar 

  3. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  4. Thomas III SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev, 2007, 107: 1339–1386

    Article  CAS  Google Scholar 

  5. Tu GL, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS. White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties. Appl Phys Lett, 2004, 85: 2172–2174

    Article  CAS  Google Scholar 

  6. Liu J, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS. The first single polymer with simultaneous blue, green, and red emission for white electroluminescence. Adv Mater, 2005, 17: 2974–2978

    Article  CAS  Google Scholar 

  7. Chen TA, Wu XM, Rieke RD. Regiocontrolled synthesis of poly (3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties. J Am Chem Soc, 1995, 117: 233–244

    Article  CAS  Google Scholar 

  8. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401: 685–688

    Article  CAS  Google Scholar 

  9. Zhang R, Li B, Iovu MC, Jeffries-EL M, Sauvé G, Cooper J, Jia S, Tristram-Nagle S, Smilgies DM, Lambeth DN, McCullough RD, Kowalewski T. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J Am Chem Soc, 2006, 128: 3480–3481

    Article  CAS  Google Scholar 

  10. Segalman RA, McCulloch B, Kirmayer S, Urban JJ. Block copolymers for organic optoelectronics. Macromolecules, 2009, 42: 9205–9216

    Article  CAS  Google Scholar 

  11. Bu LJ, Guo XY, Yu B, Qu Y, Xie ZY, Yan DH, Geng YH, Wang FS. Monodisperse cooligomer approach toward nanostructured films with alternating donor-acceptor lamellae. J Am Chem Soc, 2009, 131: 13242–13243

    Article  CAS  Google Scholar 

  12. Kappaun S, Scheiber H, Trattnig R, Zojer E, List EJW, Slugovc C. Defect chemistry of polyfluorenes: Identification of the origin of “interface defects” in polyfluorene based light-emitting devices. Chem Commun, 2008, 5170–5172

  13. Tamao K, Miyaura N. Introduction to cross-coupling reactions. Top Curr Chem, 2002, 219: 1–9

    Article  CAS  Google Scholar 

  14. Yokoyama A, Miyakoshi R, Yokozawa T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules, 2004, 37: 1169–1171

    Article  CAS  Google Scholar 

  15. Yokoyama A, Yokozawa T. Converting step-growth to chain-growth condensation polymerization. Macromolecules, 2007, 40: 4093–4101

    Article  CAS  Google Scholar 

  16. Miyakoshi R, Yokoyama A, Yokozawa T. Development of catalysttransfer condensation polymerization. Synthesis of π-conjugated polymers with controlled molecular weight and low polydispersity. J Polym Sci Part A: Polym Chem, 2008, 46: 753–765

    Article  CAS  Google Scholar 

  17. Yokozawa T, Yokoyama A. Chain-growth condensation polymerization for the synthesis of well-defined condensation polymers and π-conjugated polymers. Chem Rev, 2009, 109: 5595–5619

    Article  CAS  Google Scholar 

  18. Yokoyama A. Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki-Miyaura coupling reaction from an externally added initiator unit. J Am Chem Soc, 2007, 129: 7236–7237

    Article  CAS  Google Scholar 

  19. Beryozkina T, Boyko K, Khanduyeva N, Senkovskyy V, Horecha M, Oertel U, Simon F, Stamm M, Kiriy A. Grafting of polyfluorene by surface initiates Suzuki polycondensation. Angew Chem Int Ed, 2009, 48: 2695–2698

    Article  CAS  Google Scholar 

  20. Huang WG, Su LJ, Bo ZS. Hyperbranched polymers with a degree of branching of 100% prepared by catalyst transfer Suzuki-Miyaura polycondensation. J Am Chem Soc, 2009, 131: 10348–10349

    Article  CAS  Google Scholar 

  21. Tamao K, Sumitani K, Kumada M. Selective carbon-carbon bond formation by cross-coupling of Grignard reagents with organic halides. Catalysis by nickel-phosphine complexes. J Am Chem Soc, 1972, 94: 4374–4376

    Article  CAS  Google Scholar 

  22. Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. Angew Chem Int Ed, 2003, 42: 4302–4320

    Article  CAS  Google Scholar 

  23. Krasovskiy A, Knochel P. A LiCl-mediated Br/Mg exchange reaction for the preparation of functionalized aryl- and heteroarylmagnesium compounds from organic bromides. Angew Chem Int Ed, 2004, 43: 3333–3336

    Article  CAS  Google Scholar 

  24. Piller FM, Appukkuttan P, Gavryushin A, Helm M, Knochel P. Convenient preparation of polyfunctional aryl magnesium reagents by a direct magnesium insertion in the presence of LiCl. Angew Chem Int Ed, 2008, 47: 6802–6806

    Article  CAS  Google Scholar 

  25. Yoshikai N, Matsuda H, Nakamura E. Ligand exchange as the first irreversible step in the nickel-catalyzed cross-coupling reaction of Grignard reagent. J Am Chem Soc, 2008, 130: 15258–15259

    Article  CAS  Google Scholar 

  26. Zenkina OV, Karton A, Freeman D, Shimon LJW, Martin JML, van der Boom ME. Directing aryl-I versus aryl-Br bond activation by nickel via a ring walking process. Inorg Chem, 2008, 24: 5114–5121

    Article  CAS  Google Scholar 

  27. Lowe RD, Khersonsky SM, McCullough RD. A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophene)s using Grignard metathesis. Adv Mater, 1999, 11: 250–253

    Article  Google Scholar 

  28. McCullough RD, Lowe RD, Jayaraman M, Anderson DL. Design, synthesis, and control of conducting polymer architectures: Structurally homogeneous poly(3-alkylthiophene)s. J Org Chem, 1993, 58: 904–912

    Article  CAS  Google Scholar 

  29. Miyakoshi R, Yokoyama A, Yokozawa T. Synthesis of poly(3-hexylthiophene) with a narrower polydispersity. Macromol Rapid Commun, 2004, 25: 1663–1666

    Article  CAS  Google Scholar 

  30. Sheina EE, Liu JS, Iovu MC, Laird DW, McCullough RD. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules, 2004, 37: 3526–3528

    Article  CAS  Google Scholar 

  31. Iovu MC, Sheina EE, Gil RR, McCullough RD. Experimental evidence for the quasi-“living” nature of the Grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes). Macromolecules, 2005, 38: 8649–8656

    Article  CAS  Google Scholar 

  32. Loewe RS, Ewbank PC, Liu JS, Zhai L, McCullough RD. Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the GRIM method: Investigation of the reaction and the origin of regioselectivity. Macromolecules, 2001, 34: 4324–4333

    Article  CAS  Google Scholar 

  33. Boyd SD, Jen AKY, Luscombe CK. Steric stabilization effects in Nickel-catalyzed regioregular poly(3-hexylthiophene) synthesis. Macromolecules, 2009, 42: 9387–9389

    Article  CAS  Google Scholar 

  34. Wu SP, Bu LJ, Huang L, Yu XH, Han YC, Geng YH, Wang FS. Synthesis and characterization of phenylene-thiophene all-conjugated diblock copolymers. Polymer, 2009, 50: 6245–6251

    Article  CAS  Google Scholar 

  35. Miyakoshi R, Yokoyama A, Yokozawa T. Catalyst-transfer polycondensation mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J Am Chem Soc, 2005, 127: 17542–17547

    Article  CAS  Google Scholar 

  36. Jeffries-EL M, Sauvé G, McCullough RD. Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified Grignard metathesis reaction. Macromolecules, 2005, 38: 10346–10352

    Article  CAS  Google Scholar 

  37. Beryozkina T, Senkovskyy V, Kaul E, Kiriy A. Kumada catalyst-transfer polycondensation of thiophene-based oligomers: Robustness of a chain-growth mechanism. Macromolecules, 2008, 41: 7817–7823

    Article  CAS  Google Scholar 

  38. Doubina N, Ho A, Jen AKY, Luscombe CK. Effect of initiators on the Kumada catalyst-transfer polycondensation reaction. Macromolecules, 2009, 42: 7670–7677

    Article  CAS  Google Scholar 

  39. Doubina N, Stoddard M, Bronstein HA, Jen AKY, Luscombe CK. The effects of binding ligand variation on the nickel catalyzed externally initiated polymerization of 2-bromo-3-hexyl-5-iodothiophene. Macromol Chem Phys, 2009, 210: 1966–1972

    Article  CAS  Google Scholar 

  40. Bronstein HA, Luscombe CK. Externally initiated regioregular P3HT with controlled molecular weight and narrow polydispersity. J Am Chem Soc, 2009, 131: 12894–12895

    Article  CAS  Google Scholar 

  41. Lanni EL, McNeil AJ. Mechanistic studies on Ni(dppe)Cl2-catalyzed chain-growth polymerizations: evidence for rate-determining reductive elimination. J Am Chem Soc, 2009, 131: 16573–16579

    Article  CAS  Google Scholar 

  42. Adachi I, Miyakoshi R, Yokoyama A, Yokozawa T. Synthesis of well-defined polythiophene with oxyethylene side chain: Effect of phosphine ligands on catalyst-transfer polycondensation. Macromolecules, 2006, 39: 7793–7795

    Article  CAS  Google Scholar 

  43. Vallat P, Lamps JP, Schosseler F, Rawiso M, Catala JM. Quasi-controlled polymerization through a nickel catalyst process of a functionalized thiophene monomer: kinetic studies and application to the synthesis of regioregular poly(thiophene-3-acetic acid). Macromolecules, 2007, 40: 2600–2602

    Article  CAS  Google Scholar 

  44. Ohshimizu K, Ueda M. Well-controlled synthesis of block copolythiophenes. Macromolecules, 2008, 41:5289–5294

    Article  CAS  Google Scholar 

  45. Miyanishi S, Tajima K, Hashimoto K. Morphological stabilization of polymer photovoltaic cells by using cross-linkable poly(3-(5-hexenyl) thiophene). Macromolecules, 2009, 42: 1610–1618

    Article  CAS  Google Scholar 

  46. Benanti TL, Kalaydjian A, Venkataraman D. Protocols for efficient postpolymerization functionalization of regioregular polythiophenes. Macromolecules, 2008, 41: 8312–8315

    Article  CAS  Google Scholar 

  47. Ouhib F, Khoukh A, Ledeuil JB, Martinez H, Desbrières J, Dagron-Lartigau C. Diblock and random donor/acceptor “double cable” polythiophene copolymers via the GRIM method. Macromolecules, 2008, 41: 9736–9743

    Article  CAS  Google Scholar 

  48. Koeckelberghs G, Vanghluwe M, Doorsselaere KV, Robijns E, Persoons A, Verbiest T. Regioregularity in poly(2-alkoxythiophene)s: effects on the Faraday rotation and polymerization mechanism. Macromol Rapid Commun, 2006, 27: 1920–1925

    Article  CAS  Google Scholar 

  49. Sheina EE, Khersonsky SM, Jones EG, McCullough RD. Highly conductive, regioregular alkoxy-functionalized polythiophenes: A new class of stable, low band gap materials. Chem Mater, 2005, 17: 3317–3319

    Article  CAS  Google Scholar 

  50. Ouhib F, Hiorns RC, de Bettignies R, Bailly S, Desbrières J, Dargon-Lartigau C. Photovoltaic cells based on polythiophenes carrying lateral phenyl groups, Thin Solid Films, 2008, 516: 7199–7204

    Article  CAS  Google Scholar 

  51. Miyakoshi R, Shimono K, Yokoyama A, Yokozawa T. Catalysttransfer polycondensation for the synthesis of poly(p-phenylene) with controlled molecular weight and low polydispersity. J Am Chem Soc, 2006, 128: 16012–16013

    Article  CAS  Google Scholar 

  52. Yokoyama A, Kato A, Miyakoshi R, Yokozawa T. Precision synthesis of poly(N-hexylpyrrole) and its diblock copolymers with poly (p-phenylene) via catalyst-transfer polycondensation. Macromolecules, 2008, 41: 7271–7273

    Article  CAS  Google Scholar 

  53. Huang L, Wu SP, Qu Y, Geng YH, Wang FS. Grignard metathesis chain-growth polymerization for polyfluorenes. Macromolecules, 2008, 41: 8944–8947

    Article  CAS  Google Scholar 

  54. Stefan MC, Javier AE, Osaka I, McCullough RD. Grignard metathesis method (GRIM): Toward a universal method for the synthesis of conjugated polymers. Macromolecules, 2009, 42: 30–32

    Article  CAS  Google Scholar 

  55. Wu SP, Sun YQ, Huang L, Wang JW, Zhou YH, Geng YH, Wang FS. Grignard metathesis chain-growth polymerization for poly(bithienyl-methylene)s: Ni catalyst can transfer across the non-conjugated monomer. Macromolecules, 2010, 43: 4438–4440

    Article  CAS  Google Scholar 

  56. Senkovskyy V, Khanduyeva N, Komber H, Oertel U, Stamm M, Kuckling D, Kiriy A. Conductive polymer brushes of regioregular head-to-tail poly(3-alkylthiophenes) via catalyst-transfer surface-initiated polycondensation. J Am Chem Soc, 2007, 129: 6626–6632

    Article  CAS  Google Scholar 

  57. Khanduyeva N, Senkovskyy V, Beryozkina T, Bocharova V, Simon F, Nitschke M, Stamm M, Grötzschel R, and Kiriy A. Grafting of poly(3-hexylthiophene) from poly(4-bromostyrene) films by Kumada catalyst-transfer polycondensation: Revealing of the composite films structure. Macromolecules, 2008, 41: 7383–7389

    Article  CAS  Google Scholar 

  58. Khanduyeva N, Senkovskyy V, Beryozkina T, Horecha Marta, Stamm M, Uhrich C, Riede M, Leo K, Kiriy A. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): Preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes. J Am Chem Soc, 2009, 131: 153–161

    Article  CAS  Google Scholar 

  59. Senkovskyy V, Tkachov R, Beryozkina T, Komber H, Oertel U, Horecha M, Bocharova V, Stamm M, Gevorgyan SA, Krebs FC, Kiriy A. “Hairy” poly(3-hexylthiophene) particles prepared via surface-initiated Kumada catalyst-transfer polycondensation. J Am Chem Soc, 2009, 131: 16445–16453

    Article  CAS  Google Scholar 

  60. Tkachov R, Senkovskyy V, Horecha M, Oertel U, Stamm M, Kiriy A. Surface-initiated Kumada catalyst-transfer polycondensation of poly-(9,9-dioctylfluorene) from organosilica particles: chain-confinement promoted β-phase formation. Chem Commun, 2010, 46: 1425–1427

    Article  CAS  Google Scholar 

  61. Sontag SK, Marshall N, Locklin J. Formation of conjugated polymer brushes by surface-initiated catalyst-transfer polycondensation. Chem Commun, 2009, 3354–3356

  62. Marshall N, Sontag SK, Locklin J. Substituted poly(p-phenylene) thin films via surface-initiated Kumada-type catalyst transfer poly-condensation. Macromolecules, 2010, 43: 2137–2144

    Article  CAS  Google Scholar 

  63. Scherf U, Gutacker A, Koenen N. All-conjugated block copolymers. Acc Chem Res, 2008, 41: 1086–1097

    Article  CAS  Google Scholar 

  64. Yokozawa T, Adachi I, Miyakoshi R, Yokoyama A. Catalyst-transfer condensation polymerization for the synthesis of well-defined polythiophene with hydrophilic side chain and of diblock co-polythiophene with hydrophilic and hydrophobic side chains. High Perform Polym, 2007, 19: 684–699

    Article  CAS  Google Scholar 

  65. Zhang Y, Tajima K, Hirota K, Hashimoto K. Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation. J Am Chem Soc, 2008, 130: 7812–7813

    Article  CAS  Google Scholar 

  66. Wu PT, Ren GQ, Li CX, Mezzenga R, Jenekhe SA. Crystalline diblock conjugated copolymers: synthesis, self-assembly, and microphase separation of poly(3-butylthiophene)-b-poly(3-octylthio-phene). Macromolecules, 2009, 42: 2317–2320

    Article  CAS  Google Scholar 

  67. Van den Bergh K, Cosemans I, Verbiest T, Koeckelberghs G. Expression of supramolecular chirality in block copoly(thiophene)s. Macromolecules, 2010, 43: 3794–3800

    Article  CAS  Google Scholar 

  68. Miyakoshi R, Yokoyama A, Yokozawa T. Importance of the order of successive catalyst-transfer condensation polymerization in the synthesis of block copolymers of polythiophene and poly(p-phenylene). Chem Lett, 2008, 37: 1022–1023

    Article  CAS  Google Scholar 

  69. Javier AE, Varshney SR, McCullough RD. Chain-growth synthesis of polyfluorenes with low polydispersities, block copolymers of fluorene, and end-capped polyfluorenes: toward new optoelectronic materials. Macromolecules, 2010, 43: 3233–3237

    Article  CAS  Google Scholar 

  70. Jeffries-EL M, Sauvé G, McCullough RD. In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the Grignard metathesis polymerization method. Adv Mater, 2004, 16: 1017–1019

    Article  CAS  Google Scholar 

  71. Smeets A, Van den Bergh K, Winter JD, Gerbaux P, Verbiest T, Koeckelberghs G. Incorporation of different end groups in conjugated polymers using functional nickel initiators. Macromolecules, 2009, 42: 7638–7641

    Article  CAS  Google Scholar 

  72. Iovu MC, Jeffries-EL M, Sheina EE, Cooper JR, McCullough RD. Regioregular poly(3-alkylthiophene) conducting block copolymers. Polymer, 2005, 46: 8582–8586

    Article  CAS  Google Scholar 

  73. Sauvé G, McCullough RD. High field-effect mobilities for diblock copolymers of poly(3-hexylthiophene) and poly(methyl acrylate). Adv Mater, 2007, 19: 1822–1825

    Article  CAS  Google Scholar 

  74. Craley CR, Zhang R, Kowalewski T, McCullough RD, Stefan MC. Regioregular poly(3-hexylthiophene) in a novel conducting amphiphilic block copolymer. Macromol Rapid Commun, 2009, 30: 11–16

    Article  CAS  Google Scholar 

  75. Iovu MC, Jeffries-EL M, Zhang R, Kowalewski T, McCullough RD. Conducting block copolymer nanowires containing regioregular poly(3-hexylthiophene) and polystyrene. J Macromol Sci Part A Pure Appl Chem, 2006, 43: 1991–2000

    Article  CAS  Google Scholar 

  76. Kaul E, Senkovskyy V, Tkachov R, Bocharova V, Komber H, Stamm M, Kiriy A. Synthesis of a bifunctional initiator for controlled Kumada catalyst-transfer polycondensation/nitroxide-mediated polymerization and preparation of poly(3-hexylthiophene)-polystyrene block copolymer therefrom. Macromolecules, 2010, 43: 77–81

    Article  CAS  Google Scholar 

  77. Iovu MC, Craley CR, Jeffries-EL M, Krankowski AB, Zhang R, Kowalewski T, McCullough RD. Conducting regioregular polythiophene block copolymer nanofibrils synthesized by reversible addition fragmentation chain transfer polymerization (RAFT) and nitroxide mediated polymerization (NMP). Macromolecules, 2007, 40: 4733–4735

    Article  CAS  Google Scholar 

  78. Boudouris BW, Frisbie CD, Hillmyer MA. Nanoporous poly-(3-alkylthiophene) thin films generated from block copolymer templates. Macromolecules, 2008, 41: 67–75

    Article  CAS  Google Scholar 

  79. Dai CA, Yen WC, Lee YH, Ho CC, Su WF. Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexylthiophene) via anionic macroinitiation method and their self-assembly behavior. J Am Chem Soc, 2007, 129: 11036–11038

    Article  CAS  Google Scholar 

  80. Higashihara T, Ohshimizu K, Hirao A, Ueda M. Facile synthesis of ABA triblock copolymer containing regioregular poly(3-hexylthiophene) and polystyrene segments via linking reaction of poly(styryl)lithium. Macromolecules, 2008, 41: 9505–9507

    Article  CAS  Google Scholar 

  81. Radano CP, Scherman OA, Stingelin-Stutzmann N, Mller C, Breiby DW, Smith P, Janssen RAJ, Meijer EW. Crystalline-crystalline block copolymers of regioregular poly(3-hexylthiophene) and polyethylene by ring-opening metathesis polymerization. J Am Chem Soc, 2005, 127: 12502–12503

    Article  CAS  Google Scholar 

  82. Urien M, Erothu H, Cloutet E, Hiorns RC, Vignau L, Cramail H. Poly(3-hexylthiophene) based block copolymers prepared by “click” chemistry. Macromolecules, 2008, 41: 7033–7040

    Article  CAS  Google Scholar 

  83. Boudouris BW, Frisbie CD, Hillmyer MA. Polylactide-polythiophene-polylactide triblock copolymers. Macromolecules, 2010, 43: 3566–3569

    Article  CAS  Google Scholar 

  84. Moon HC, Anthonysamy A, Lee Y, Kim JK. Facile synthesis of well-defined coil-rod-coil block copolymer composed of regioregular poly(3-hexylthiophene) via anionic coupling reaction. Macromolecules, 2010, 43: 1747–1752

    Article  CAS  Google Scholar 

  85. Richard F, Brochon C, Leclerc N, Eckhardt D, Heiser T, Hadziioannou G. Design of a linear poly(3-hexylthiophene)/fullerene-based donor-acceptor rod-coil block copolymer. Macromol Rapid Commun, 2008, 29: 885–891

    Article  CAS  Google Scholar 

  86. Lee JU, Cirpan A, Emrick T, Russell TP, Jo WH. Synthesis and photophysical property of well-defined donor-acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. J Mater Chem, 2009, 19: 1483–1489

    Article  CAS  Google Scholar 

  87. Zhang QL, Cirpan A, Russell TP, Emrick T. Donor-acceptor poly (thiophene-block-perylene diimide) copolymers: Synthesis and solar cell fabrication. Macromolecules, 2009, 42: 1079–1082

    Article  CAS  Google Scholar 

  88. Rajaram S, Armstrong PB, Kim BJ, Fréchet JMJ. Effect of addition of a diblock copolymer on blend morphology and performance of poly(3-hexylthiophene): Perylene diimide solar cells. Chem Mater, 2009, 21: 1775–1777

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanHou Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, Y., Huang, L., Wu, S. et al. Kumada chain-growth polycondensation as a universal method for synthesis of well-defined conjugated polymers. Sci. China Chem. 53, 1620–1633 (2010). https://doi.org/10.1007/s11426-010-4048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4048-2

Keywords

Navigation