Skip to main content
Log in

Impurity analysis of gentamicin bulk samples by improved liquid chromatography-ion trap mass spectrometry

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Several gentamicin bulk samples from different origins were investigated using an LC/MS method. LC equipped with ion trap MS with positive ionization was performed on a Capcell Pak C18 (AQ) column with the mobile phase containing 50 mM trifluoroacetic (TFA) and methanol. Impurities present in batches of gentamicin bulk samples were elucidated and compared according to their fragmentation behavior. In total seventeen impurities present in samples, five impurities were not elucidated and two compounds were identified preliminarily. It was observed that the impurity profiles were different in samples from different origins which indicate necessity in the quality control of gentamicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinstein M, Luedemann G, Oden E, Wagman G. Gentamicin, a new broad-spectrum antibiotic complex. Antimicrob Agents Chemother, 1963, 161: 1–7

    CAS  Google Scholar 

  2. Bachmann H, Bickford S, Kohn F. Comparative in vitro activity of gentamicin and other antibiotics against bacteria isolated from clinical samples from dogs, cats, horses and cattle. Veterinary Medicine and Small Animal Clinician, 1975, 70(10): 1218–1222

    CAS  Google Scholar 

  3. Berdy J, Pauncz J, Vajna Z, Horvath G, Gyimesi J, Koczka I. Metabolites of gentamicin-producing micromonospora species. 1. Isolation and identification of metabolites. J Antibiot, 1977, 30(11): 945–954

    CAS  Google Scholar 

  4. Okachi R, Kawamoto I, Takasawa S, Yamamoto M, Sato S, Sato T, Nara T. New antibiotic XK-62-2 (sagamicin). 1. Isolation, physicochemical and antibacterial properties. J Antibiot, 1974, 27(10): 793–800

    CAS  Google Scholar 

  5. Daniels P, Luce C, Nagabhushan T, Jaret R, Schumacher D, Reimann H, Ilavsky J. Gentamicin antibiotics. 6. Gentamicin, an aminoglycoside antibiotic produced by micromonospora-purpurea mutant JI-33. J Antibiot, 1975, 28(1): 35–41

    CAS  Google Scholar 

  6. Wagman GH, Weinstein J, Tkach R, Marquez JA, Bailey JV, Cooper D, Daniels P. Chromatographic separation of some minor components of gentamicin complex. J Chromatogr, 1972, 70(1): 171–173

    Article  CAS  Google Scholar 

  7. Lee BK, Condon RG, Wagman GH, Katz E. Micromonospora-produces gentamicin components. Antimicrob Agents Chemother, 1976, 9(1): 151–159

    CAS  Google Scholar 

  8. Testa R, Tilley B, Biotransformation, a new approach to aminoglycoside biosynthesis. 2. Gentamicin. J Antibiot, 1976, 29(2): 140–146

    CAS  Google Scholar 

  9. Berdy J, Jarai M. Micromonospora produced aminoglycoside antibiotics-chemistry and microbiology. Process Biochem, 1986, 21(3): 93–100

    CAS  Google Scholar 

  10. Berdy J, Jarai M. Micromonospora produced aminoglycoside antibiotics-chemistry and microbiology. 2. Process Biochem, 1986, 21(4): 103–106

    CAS  Google Scholar 

  11. Wagman GH, Marquez JA, Weinstei MJ. Chromatographic separation of gentamicin complex. J Chromatogr, 1968, 34(2): 210

    Article  CAS  Google Scholar 

  12. Wilson WL, Richard G, Hughes DW. Thin-layer chromatographic identification of gentamicin complex. J Chromatogr, 1973, 78(2): 442–444

    CAS  Google Scholar 

  13. Byrne KM, Kershner AS, Maehr H, Marquez JA, Schaffner CP. Separation of gentamicin C-complex into 5 components by craig distribution. J Chromatogr, 1977, 131: 191–203

    Article  CAS  Google Scholar 

  14. Thomas AH, Tappin SD. Separation of gentamicin complex by ion-exchange column chromatography. J Chromatogr, 1974, 97(2): 280–283

    Article  CAS  Google Scholar 

  15. Seidl G, Nerad HP. Gentamacin-c-separation of C-1, C-1a, C-2a and C-2b components by HPLC using isocratic ion-exchange chromatography and post-column derivatization. Chromatographia, 1988, 25(3): 169–171

    Article  CAS  Google Scholar 

  16. Kaine LA, Wolnik KA. Forensic investigation of gentamicin sulfates by an ion-exchange ion chromatography with pulsed electrochemical detection. J Chromatogr, 1994, 674(1–2): 255–261

    Article  CAS  Google Scholar 

  17. Gambardella P, Punziano R, Gionti M, Guadalupi C, Mancini G, Mangia A. Quantitative-determination and separation of analogs of aminoglycoside antibiotics by high-performance liquid-chromatography. J Chromatogr, 1985, 348(1): 229–240

    Article  CAS  Google Scholar 

  18. White LO, Lovering A, Reeves DS. Variations in gentamicin-C1, gentamicin-C1a, gentamicin-C2, and gentamicin-C2a content of some preparations of gentamicin sulfate used clinically as determined by high-performance liquid-chromatography. Ther Drug Monit, 1983, 5(1): 123–126

    Article  CAS  Google Scholar 

  19. Claes PJ, Busson R, Vanderhaeghe H. Determination of the component ratio of commercial gentamicins by high-performance liquid-chromatography using pre-column derivatization. J Chromatogr, 1984, 298(3): 445–457

    Article  CAS  Google Scholar 

  20. Albracht JH, Dewit MS. Analysis of gentamicin in raw-material and in pharmaceutical preparations by high-performance liquid-chromatography. J Chromatogr, 1987, 389(1): 306–311

    Article  CAS  Google Scholar 

  21. Anhalt JP, Sancilio FD, Mccorkle T. Gentamicin C-component ratio determination by high-pressure liquid-chromatography. J Chromatogr, 1978, 153(2): 489–493

    Article  CAS  Google Scholar 

  22. Freeman M, Hawkins PA, Loran JS, Stead JA. Analysis if gentamicin sulfate in phaemaceutical specialities by high-performance liquid-chromatography. J Chromatogr, 1979, 2(9): 1305–1317

    CAS  Google Scholar 

  23. Kraisintu K, Parfitt RT, Rowan MG. A high-performance liquid-chromatographic method for the determination and control of the composition of gentamicin sulfate. Int J Pharmac, 1982, 10(1): 67–75

    Article  CAS  Google Scholar 

  24. Getek TA, Haneke AC, Selzer GB. Determination of gentamicin sulfate C-1a, C-2, and C-components by ion-pair liquid-chromatography with electrochemical detection. J Assoc Anal Chem, 1983, 66(1): 172–175

    CAS  Google Scholar 

  25. Weigand R, Coombes RJ. Gentamicin determination by high-performance liquid-chromatography. J hromatogr, 1983, 281: 381–385

    Article  CAS  Google Scholar 

  26. Claes PJ, Chaerani Y, Vanderhaeghe H. Differentiation of the C2 and C2a components by paired-ion high-performance liquid-chromatography of underivatized gentamicin. J Pharm Belg, 1985, 40(2): 95–99

    CAS  Google Scholar 

  27. Getek TA, Vestal ML, Alexander TG. Analysis of gentamicin sulfate by high-performance liquid-chromatography combined with thermospray mass-spectrometry. J Chromatogr, 1991, 554(1–2): 191–203

    Article  CAS  Google Scholar 

  28. Graham AE, Speicher E, Williamson B. Analysis of gentamicin sulfate and a study of its degradation in dextrose solution. J Pharm Biomed Anal, 1997, 15(4): 537–543

    Article  CAS  Google Scholar 

  29. Megoulas NC, Koupparis MA. Development and validation of a novel LC/ELSD method for the quantitation of gentamicin sulfate components in pharmaceuticals. J Pharm Biomed Anal, 2004, 36(1): 73–79

    Article  CAS  Google Scholar 

  30. Clarot I, Chaimbault P, Hasdenteufel F, Netter P, Nicolas A. Determination of gentamicin sulfate and related compounds by high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A, 2004, 1031(1–2): 281–287

    CAS  Google Scholar 

  31. Adams E, Roelants W, De Paepe R, Roets E, Hoogmartens J. Analysis of gentamicin by liquid chromatography with pulsed electrochemical detection. J Pharm Biomed Anal, 1998, 18(4–5): 689–698

    Article  CAS  Google Scholar 

  32. Kaale E, Leonard S, Van Schepdael A, Roets E, Hoogmartens J. Capillary electrophoresis analysis of gentamicin sulphate with UV detection after pre-capillary derivatization with 1,2-phthalic dicarboxaldehyde and mercaptoacetic acid. J Chromatogr A, 2000, 895(1–2): 67–79

    Article  CAS  Google Scholar 

  33. Li B, Adams E, Van Schepdael A, Hoogmartens J. Analysis of unknown compounds in gentamicin bulk samples with liquid chromatography coupled with ion trap mass spectrometry. Rapid Commun Mass Spectrom, 2006, 20(3): 393–402

    Article  CAS  Google Scholar 

  34. Kaale E, Van Goidsenhoven E, Van Schepdael A, Roets E, Hoogmartens J. Electrophoretically mediated microanalysis of gentamicin with in-capillary derivatization and UV detection. Electrophoresis, 2001, 22(13): 2746–2754

    Article  CAS  Google Scholar 

  35. Inchauspe G, Deshayes C, Samain D. Use of perfluorinated counter ions for the combination of ion-pair HPLC and field desorption mass-spectrometry-application to the early characterization of aminoglycoside antibiotics. J Antibio, 1985, 38(11): 1526–1535

    CAS  Google Scholar 

  36. Barends DM, Zwaan CL, Hulshott A. Improved micro-determination of gentamicin and sisomicin in serum by high-performance liquid-chromatography with ultraviolet detection. J Chromatogr, 1981, 222(2): 316–323

    Article  CAS  Google Scholar 

  37. Barends DM, Van Der Sandt JSF, Hulshoff A. Micro-determination of gentamicin in serum by high-performance liquid-chromatography with ultraviolet detection. J Chromatogr, 1980, 182(2): 201–210

    Article  CAS  Google Scholar 

  38. Grahek R, Kralj LZ. Identification of gentamicin impurities by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal, 2009, 50(5): 1037–1043

    Article  CAS  Google Scholar 

  39. Joseph A, Rustum A. Development and validation of a RP-HPLC method for the determination of gentamicin sulfate and its related substances in a pharmaceutical cream using a short pentafluorophenyl column and a charged aerosol detector. J Pharm Biomed Anal, 2010, 51(3): 521–531

    Article  CAS  Google Scholar 

  40. Joseph A, Rustum A. Development and validation of a RP-HPLC method for the determination of gentamicin sulfate and its related substances in a pharmaceutical cream using a short pentafluorophenyl column and a Charged Aerosol Detector. J Pharm Biomed, 2010, 51(3): 521–531

    Article  CAS  Google Scholar 

  41. Li B, Van Schepdael A, Hoogmartens J, Adams E. Characterization of impurities in tobramycin by liquid chromatography-mass spectrometry. J Chromatogr A, 2009, 1216(18): 3941–3945

    Article  CAS  Google Scholar 

  42. Dubois M, Fluchard D, Sior E, Delahaut P. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B, 2001, 753(2): 189–202

    Article  CAS  Google Scholar 

  43. Xiangguo S, Shuqiu Z, Fawcett JP, Dafang Z. Acid catalysed degradation of some spiramycin derivatives found in the antibiotic bitespiramycin. J Pharm Biomed Anal, 2004, 36(3): 593–600

    Article  Google Scholar 

  44. Pendela M, Govaerts C, Diana J, Hoogmartens J, Van Schepdael A, Adams E. Characterization of impurities in spiramycin by liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom, 2007, 21(4): 599–613

    Article  CAS  Google Scholar 

  45. Wang MJ, Pendela M, Hu CQ, Jin SH, Hoogmartens J, Van Schepdael A, Adams E. Impurity profiling of acetylspiramycin by liquid chromatography-ion trap mass spectrometry. J Chromatogr A, 2010, 1217(42): 6531–6544

    Article  CAS  Google Scholar 

  46. Kotretsou SI, Constantinou-Kokotou V. Mass spectrometric studies on the fragmentation and structural characterization of aminoacyl derivatives of kanamycin A. Carbohydr Res, 1998, 310(1–2): 121–127

    Article  CAS  Google Scholar 

  47. Goolsby BJ, Brodbelt JS. Analysis of protonated and alkali metal cationized aminoglycoside antibiotics by collision-activated dissociation and infrared multi-photon dissociation in the quadrupole ion trap. J Mass Spectrom, 2000, 35(8): 1011–1024

    Article  CAS  Google Scholar 

  48. Hu PF, Chess EK, Brynjelsen S, Jakubowski G, Melchert J, Hammond RB, Wilson TD. Collisionally activated dissociations of aminocyclitol-aminoglycoside antibiotics and their application in the identification of a new compound in tobramycin samples. J Am Soc Mass Spectrom, 2000, 11(3): 200–209

    Article  CAS  Google Scholar 

  49. Li B, Van Schepdael A, Hoogmartens J, Adams E. Mass spectrometric characterization of gentamicin components separated by the new European Pharmacopoeia method. J Pharm Biomed Anal, 2011, 55(1): 78–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BoChu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, C., Wang, B., Wang, M. et al. Impurity analysis of gentamicin bulk samples by improved liquid chromatography-ion trap mass spectrometry. Sci. China Chem. 54, 1518–1528 (2011). https://doi.org/10.1007/s11426-011-4304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4304-0

Keywords

Navigation