Skip to main content
Log in

Characterization of heavy petroleum fraction by positive-ion electrospray ionization FT-ICR mass spectrometry and collision induced dissociation: Bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds

  • Articles
  • Special Topic · Chemistry of Heavy Petroleum Fractions and its Impacts on Refining Processes
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This paper examined the bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds in Sudan heavy petroleum fraction. Both broadband and quadrupole isolation modes positive-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with collision induced dissociation (CID) techniques were used to characterize a low sulfur crude oil derived vacuum residuum (VR). The appropriate CID operating condition was selected by comparing the molecular weight distributions of the basic nitrogen compounds under various CID operating conditions. Both odd- and even-electron fragment ions were observed from the mass spectrum, indicating that the heterolytic and homolytic bond cleavages occurred simultaneously during the CID process. The odd-electron fragment ions were predominant in each class species, indicating preferential heterolytic bond cleavages. At the optimal CID condition, the alkyl groups decomposed deeply and just left the aromatic cores of the nitrogen compounds. No significant variation in double bond equivalent (DBE) value was observed between the fragment and parent ions, revealing that the domination of single core structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speight JG. The Chemistry and Technology of Petroleum. 2007: CRC Press/Taylor & Francis

    Google Scholar 

  2. Mullins OC. The Modified yen model. Energ Fuel, 2010, 24(4): 2179–2207

    Article  CAS  Google Scholar 

  3. Gray MR, Tykwinski RR, Stryker JM, Tan X. Supramolecular assembly model for aggregation of petroleum asphaltenes. Energ Fuel, 2011, 25(7): 3125–3134

    Article  CAS  Google Scholar 

  4. Peng Pa, Fu J, Sheng G, Morales-Izquierdo A, Lown EM, Strausz OP. Ruthenium-ions-catalyzed oxidation of an immature asphaltene: Structural features and biomarker distribution. Energ Fuel, 1999, 13(2): 266–277

    Article  CAS  Google Scholar 

  5. Zhang ZG, Guo S, Zhao S, Yan G, Song L, Chen L. Alkyl side chains connected to aromatic units in dagang vacuum residue and its supercritical fluid extraction and fractions (Sfefs). Energ Fuel, 2008, 23(1): 374–385

    Article  Google Scholar 

  6. Zhou X, Shi Q, Zhang Y, Zhao S, Zhang R, Chung KH, Xu C. Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray fourier transform ion cyclotron resonance mass spectrometry. Anal Chem, 2012, 84(7): 3192–3199

    Article  CAS  Google Scholar 

  7. Liao Z, Zhao J, Creux P, Yang C. Discussion on the structural features of asphaltene molecules. Energ Fuel, 2009, 23(12): 6272–6274

    Article  CAS  Google Scholar 

  8. Karimi A, Qian K, Olmstead WN, Freund H, Yung C, Gray MR. Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis. Energ Fuel, 2011, 25(8): 3581–3589

    Article  CAS  Google Scholar 

  9. Sabbah H, Morrow AL, Pomerantz AE, Zare RN. Evidence for island structures as the dominant architecture of asphaltenes. Energ Fuel, 2011, 25(4): 1597–1604

    Article  CAS  Google Scholar 

  10. Pinkston DS, Duan P, Gallardo VA, Habicht SC, Tan X, Qian K, Gray M, Mullen K, Kenttamaa HI. Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/fourier transform ion cyclotron resonance mass spectrometry. Energ Fuels, 2009, 23(11): 5564–5570

    Article  CAS  Google Scholar 

  11. Borton D, Pinkston DS, Hurt MR, Tan X, Azyat K, Scherer A, Tykwinski R, Gray M, Qian K, Kenttämaa HI. Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry. Energ Fuel, 2010, 24(10): 5548–5559

    Article  CAS  Google Scholar 

  12. Sabbah H, Morrow AL, Pomerantz AE, Mullins OC, Tan X, Gray MR, Azyat K, Tykwinski RR, Zare RN. Comparing Laser desorption/laser ionization mass spectra of asphaltenes and model compounds. Energ Fuel, 2010, 24(6): 3589–3594

    Article  CAS  Google Scholar 

  13. Qian K, Edwards KE, Mennito AS, Freund H, Saeger RB, Hickey KJ, Francisco MA, Yung C, Chawla B, Wu C, Kushnerick JD, Olmstead WN. Determination of structural building blocks in heavy petroleum systems by collision-induced dissociation fourier transform ion cyclotron resonance mass spectrometry. Anal Chem, 2012, 84(10): 4544–4551

    Article  CAS  Google Scholar 

  14. Hsu CS. Mass Resolving power requirement for molecular formula determination of fossil oils. Energ Fuel, 2012, 26(2): 1169–1177

    Article  CAS  Google Scholar 

  15. Zhan D, Fenn JB. Electrospray mass spectrometry of fossil fuels1. Inter J Mass Spectro, 2000, 194(2–3): 197–208

    Article  CAS  Google Scholar 

  16. Qian K, Robbins WK, Hughey CA, Cooper HJ, Rodgers RP, Marshall AG. Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2001, 15(6): 1505–1511

    Article  CAS  Google Scholar 

  17. Qian K, Rodgers RP, Hendrickson CL, Emmett MR, Marshall AG. Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energ Fuel, 2001, 15(2): 492–498

    Article  CAS  Google Scholar 

  18. Marshall AG, Rodgers RP. Petroleomics: The next grand challenge for chemical analysis. Accounts Chem Res, 2003, 37(1): 53–59

    Article  Google Scholar 

  19. Hsu CS, Hendrickson CL, Rodgers RP, McKenna AM, Marshall AG. Petroleomics: Advanced molecular probe for petroleum heavy ends. J Mass Spectrom, 2011, 46(4): 337–343

    Article  CAS  Google Scholar 

  20. Shi Q, Hou D, Chung KH, Xu C, Zhao S, Zhang Y. Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (sara) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2010, 24(4): 2545–2553

    Article  CAS  Google Scholar 

  21. Shi Q, Zhao S, Xu Z, Chung KH, Zhang Y, Xu C. Distribution of acids and neutral nitrogen compounds in a chinese crude oil and its fractions: Characterized by negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2010, 24(7): 4005–4011

    Article  CAS  Google Scholar 

  22. Shi Q, Xu C, Zhao S, Chung KH, Zhang Y, Gao W. Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2010, 24(1): 563–569

    Article  CAS  Google Scholar 

  23. Shi Q, Pan N, Liu P, Chung KH, Zhao S, Zhang Y, Xu C. Characterization of sulfur compounds in oilsands bitumen by methylation followed by positive-ion electrospray ionization and fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2010. 24(5): 3014–3019

    Article  CAS  Google Scholar 

  24. Liu P, Xu C, Shi Q, Pan N, Zhang Y, Zhao S, Chung KH. Characterization of sulfide compounds in petroleum: Selective oxidation followed by positive-ion electrospray fourier transform ion cyclotron resonance mass spectrometry. Anal Chem, 2010, 82(15): 6601–6606

    Article  CAS  Google Scholar 

  25. Shi Q, Pan N, Long H, Cui D, Guo X, Long Y, Chung KH, Zhao S, Xu C, Hsu CS. Characterization of middle-temperature gasification coal tar. Part 3: Molecular composition of acidic compounds. Energ Fuel, 2013, 27(1): 108–117

    Article  CAS  Google Scholar 

  26. Bernhard Linden H, Gross JH. Reduced fragmentation in liquid injection field desorption/ionization fourier transform ion cyclotron resonance mass spectrometry by use of helium for the thermalization of molecular ions. Rapid Commun Mass Spectrom, 2012, 26(3): 336–344

    Article  CAS  Google Scholar 

  27. Qian K, Edwards KE, Diehl JH, Green LA. Fundamentals and applications of electrospray ionization mass spectrometry for petroleum characterization. Energ Fuel, 2004, 18(6): 1784–1791

    Article  CAS  Google Scholar 

  28. Scigelova M, Hornshaw M, Giannakopulos A, Makarov A. Fourier transform mass spectrometry. Mol Cell Proteomics, 2011, 10(7): M111.009431

    Article  Google Scholar 

  29. Luo YR. Comprehensive Handbook of Chemical Bond Energies. 2007: CRC

    Book  Google Scholar 

  30. Williams JP, Nibbering NMM, Green BN, Patel VJ, Scrivens JH. Collision—Induced fragmentation pathways including odd-electron ion formation from desorption electrospray ionisation generated protonated and deprotonated drugs derived from tandem accurate mass spectrometry. J Mass Spectrom, 2006, 41(10): 1277–1286

    Article  CAS  Google Scholar 

  31. Guan F, Soma LR, Luo Y, Uboh CE, Peterman S. Collision-induced dissociation pathways of anabolic steroids by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectr, 2006, 17(4): 477–489

    Article  CAS  Google Scholar 

  32. Sigsby M, Day R, Cooks R. Fragmentation of even electron ions. Protonated ketones and ethers. Org Mass Spectrom, 1979, 14(5): 273–280

    Article  CAS  Google Scholar 

  33. Hsu CS, Lobodin VV, Rodgers RP, McKenna AM, Marshall AG. Compositional boundaries for fossil hydrocarbons. Energ Fuel, 2011, 25(5): 2174–2178

    Article  CAS  Google Scholar 

  34. Speight JG, Moschopedis SE. On the Molecular Nature of Petroleum Asphaltenes, in Chemistry of Asphaltenes. 1982, American Chemical Society. P. 1–15

    Google Scholar 

  35. Ignasiak T, Kemp-Jones AV, Strausz OP. The molecular structure of athabasca asphaltene. Cleavage of the carbon-sulfur bonds by radical ion electron transfer reactions. J Org Chem, 1977, 42(2): 312–320

    Article  CAS  Google Scholar 

  36. Smith DF, Rahimi P, Teclemariam A, Rodgers RP, Marshall AG. Characterization of athabasca bitumen heavy vacuum gas oil distillation cuts by negative/positive electrospray ionization and automated liquid injection field desorption ionization fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2008, 22(5): 3118–3125

    Article  CAS  Google Scholar 

  37. Shi Q, Xu C, Zhao S, Chung KH, Zhang Y, Gao W. Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2009, 24(1): 563–569

    Article  Google Scholar 

  38. Rodgers RP, Hendrickson CL, Emmett MR, Marshall AG, Greaney M, Qian K. Molecular characterization of petroporphyrins in crude oil by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Can J Chem, 2001, 79(5–6): 546–551

    Article  CAS  Google Scholar 

  39. Zhu X, Shi Q, Zhang Y, Pan N, Xu C, Chung KH, Zhao S. Characterization of nitrogen compounds in coker heavy gas oil and its subfractions by liquid chromatographic separation followed by fourier transform ion cyclotron resonance mass spectrometry. Energ Fuel, 2010, 25(1): 281–287

    Article  Google Scholar 

  40. Lobodin VV, Marshall AG, Hsu CS. Compositional Space boundaries for organic compounds. Anal Chem, 2012, 84(7): 3410–3416

    Article  CAS  Google Scholar 

  41. Tu YP. Dissociative protonation sites: Reactive centers in protonated molecules leading to fragmentation in mass spectrometry. J Org Chem, 2006, 71(15): 5482–5488

    Article  CAS  Google Scholar 

  42. Dongré AR, Jones JL, Somogyi Á, Wysocki VH. Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: Evidence for the mobile proton model. J Am Chem Soc, 1996, 118(35): 8365–8374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Shi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhang, Y., Zhao, S. et al. Characterization of heavy petroleum fraction by positive-ion electrospray ionization FT-ICR mass spectrometry and collision induced dissociation: Bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds. Sci. China Chem. 56, 874–882 (2013). https://doi.org/10.1007/s11426-013-4899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4899-4

Keywords

Navigation