Skip to main content
Log in

Solvent-free synthesis of zeolite catalysts

  • Reviews
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The most used method for preparation of zeolites is hydrothermal synthesis from silicate or aluminosilicate gels at temperatures in the range of 60–200 °C. Excess water used in the industrial process results in several issues, including high autogeneous pressure, low efficiency, pollution, etc. To solve these problems, several strategies have been developed. This review describes the solvent-free synthesis of zeolites. The combination of solvent-free synthesis and organotemplate-free synthesis can open the pathway to a highly sustainable zeolite synthesis protocol in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev, 1995, 95: 559–614

    Article  CAS  Google Scholar 

  2. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev, 1997, 97: 2373–2419

    Article  CAS  Google Scholar 

  3. Davis ME. Ordered porous materials for emerging applications. Nature, 2002, 417: 813–821

    Article  CAS  Google Scholar 

  4. Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev, 2003, 103: 663–701

    Article  CAS  Google Scholar 

  5. Meng X, Xiao F-S. Green routes for synthesis of zeolites. Chem Rev, 2014, 114: 1521–1543

    Article  CAS  Google Scholar 

  6. Xu W, Dong J, Li J. A novel method for the preparation of zeolite ZSM-5. J Chem Soc, Chem Commun, 1990: 755–756

    Google Scholar 

  7. Rao PRHP, Matsutaka M. Dry-gel conversion technique for synthesis of zeolite BEA. Chem Commun, 1996: 1441–1442

    Google Scholar 

  8. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris R. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature, 2004, 430: 1012–1016

    Article  CAS  Google Scholar 

  9. Parnham ER, Morris RE. Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc Chem Res, 2007, 40: 1005–1013

    Article  CAS  Google Scholar 

  10. Morris RE. Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials. Chem Commun, 2009: 2990–2998

    Google Scholar 

  11. Ren L, Wu Q, Yang C, Zhu L, Li C, Zhang P, Zhang H, Meng X, Xiao F-S. Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc, 2012, 134: 15173–15176

    Article  CAS  Google Scholar 

  12. Jin Y, Sun Q, Qi G, Guo Q, Pan S, Meng X, Xu J, Deng F, Fan F, Feng Z, Li C, Maurer S, Müller U, Xiao F-S. Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed, 2013, 52: 9172–9175

    Article  CAS  Google Scholar 

  13. Wu Q, Wang X, Qi G, Yang C, Xu J, Chen F, Megn X, Deng F, Xiao F-S. Sustainable synthesis of zeolites without addition of both organotemplates and solvents. J Am Chem Soc, 2014, 136: 4019–4025

    Article  CAS  Google Scholar 

  14. Althoff R, Unger K, Schüth F. Is the formation of a zeolite from a dry powder via a gas phase transport process possible? Micropor Mater, 1994, 2: 563–564

    Article  Google Scholar 

  15. Deforth U, Unger KK, Schüth F. Dry synthesis of B-MFI, MTN- and MTW-type materials. Micropor Mater, 1997, 9: 287–290

    Article  CAS  Google Scholar 

  16. Parnham ER, Morris RE. The ionothermal synthesis of cobalt aluminophosphate zeolite frameworks. J Am Chem Soc, 2006, 128: 2204–2205

    Article  CAS  Google Scholar 

  17. Parnham ER, Drylie EA, Wheatley PS, Slawin AMZ, Morris RE. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew Chem Int Ed, 2006, 45: 4962–4966

    Article  CAS  Google Scholar 

  18. Parnham ER, Wheatley PS, Morris RE. The ionothermal synthesis of SIZ-6: a layered aluminophosphate. Chem Commun, 2006: 380–382

    Google Scholar 

  19. Parnham ER, Morris RE. 1-Alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves. Chem Mater, 2006, 18: 4882–4887

    Article  CAS  Google Scholar 

  20. Parnham ER, Morris RE. Ionothermal synthesis using a hydrophobic ionic liquid as solvent in the preparation of a novel aluminophosphate chain structure. J Mater Chem, 2006, 16: 3682–3684

    Article  CAS  Google Scholar 

  21. Drylie EA, Wragg DS, Parnham ER, Wheatley JE, Slawin AMZ, Warren JE, Morris RE. Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates. Angew Chem Int Ed, 2007, 46: 7839–7843

    Article  Google Scholar 

  22. Liu L, Li Y, Wei HB, Dong M, Wang JG, Slawin AMZ, Li JP, Dong JX, Morris RE. Ionothermal synthesis of zirconium phosphates and their catalytic behavior in the selective oxidation of cyclohexane. Angew Chem Int Ed, 2009, 48: 2206–2209

    Article  CAS  Google Scholar 

  23. Wheatley PS, Allan PK, Teat SJ, Ashbrook SE, Morris RE. Task specific ionic liquids for the ionothermal synthesis of silica zeolites. Chem Sci, 2010, 1: 483–487

    Article  CAS  Google Scholar 

  24. Ma H, Tian Z, Xu R, Wang B, Wei Y, Wang L, Xu Y, Zhang W, Lin L. Effect of water on the ionothermal synthesis of molecular sieves. J Am Chem Soc, 2008, 130: 8120–8121

    Article  CAS  Google Scholar 

  25. Wang L, Xu Y, Wei Y, Duan J, Chen A, Wang B, Ma H, Tian Z, Lin L. Structure-directing role of amines in the ionothermal synthesis. J Am Chem Soc, 2006, 128: 7432–7433

    Article  CAS  Google Scholar 

  26. Xing H, Li J, Yan W, Chen P, Jin Z, Yu S, Xu R. Cotemplating ionothermal synthesis of a new open-framework aluminophosphate with unique Al/P ratio of 6/7. Chem Mater, 2008, 20: 4179–4181

    Article  CAS  Google Scholar 

  27. Wei Y, Tian Z, Gies H, Xu R, Ma H, Pei R, Zhang W, Xu B, Wang L, Li K, Wang B, Wen G, Lin L. Ionothermal synthesis of an aluminophosphate molecular sieve with 20-ring pore openings. Angew Chem Int Ed, 2010, 49: 5367–5370

    Article  CAS  Google Scholar 

  28. Wang L, Xu Y, Wang B, Wang S, Yu J, Tian Z, Lin L. Ionothermal synthesis of magnesium-containing aluminophosphate molecular sieves and their catalytic performance. Chem Eur J, 2008, 14: 10551–10555

    Article  CAS  Google Scholar 

  29. Ma H, Xu R, You W, Wen G, Wang S, Xu Y, Wang B, Wang L, Wei Y, Xu Y, Zhang W, Tian Z, Lin L. Ionothermal synthesis of gallophosphate molecular sieves in 1-alkyl-3-methyl imidazolium bromide ionic liquids. Micropor Mesopor Mater, 2009, 120: 278–284

    Article  CAS  Google Scholar 

  30. Yu Y, Xiong G, Li C, Xiao F-S. Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Micropor Mesopor Mater, 2001, 46: 23–24

    Article  CAS  Google Scholar 

  31. Mihailova B, Valtchev V, Mintova S, Faust AC, Petkov N, Bein T. Interlayer stacking disorder in zeolite Beta family. A Raman spectroscopic study. Phys Chem Chem Phys, 2005, 7: 2756–2763

    Article  CAS  Google Scholar 

  32. Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal, 1996, 158: 486–501

    Article  CAS  Google Scholar 

  33. Hensen EJM, Zhu Q, Janssen RAJ, Magusin PCMM, Kooyman PJ, van Santen RA. Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites: 1. On the role of iron and aluminum. J Catal, 2005, 233: 123–135

    Article  CAS  Google Scholar 

  34. Wang C, Wang Y, Liu H, Xie Z, Liu Z. Catalytic activity and selectivity of methylbenzenes in HSAPO-34 catalyst for the methanol-to-olefins conversion from first principles. J Catal, 2010, 271: 386–391

    Article  CAS  Google Scholar 

  35. Morris RE, James SL. Solventless synthesis of zeolites. Angew Chem Int Ed, 2013, 52: 2163–2165

    Article  CAS  Google Scholar 

  36. Xie B, Song J, Ren L, Ji Y, Li J, Xiao F-S. An organotemplate-free and fast route for synthesizing Beta zeolite. Chem Mater, 2008, 20: 4533–4535

    Article  CAS  Google Scholar 

  37. Xie B, Zhang H, Yang C, Liu S, Ren L, Zhang L, Meng X, Yilmaz B, Muller U, Xiao F-S. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chem Commun, 2011, 47: 3945–3947

    Article  CAS  Google Scholar 

  38. Zhang H, Xie B, Meng X, Muller U, Yilmaz B, Feyen M, Maurer S, Gies H, Tatsumi T, Bao X, Zhang W, de Vos D, Xiao F-S. Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Micropor Mesopor Mater, 2013, 180: 123–129

    Article  CAS  Google Scholar 

  39. Kamimura Y, Chaikittisilp W, Itabashi K, Shimojima A, Okubo T. Critical factors in the seed-assisted synthesis of zeolite Beta and “green Beta” from OSDA-free Na+-aluminosilicate gels. Chem Asian J, 2010, 5: 2182–2191

    Article  CAS  Google Scholar 

  40. Kamimura Y, Tanahashi S, Itabashi K, Sugawara A, Wakihara T, Shimojima A, Okubo T. Crystallization behavior of zeolite Beta in OSDA-free, seed-assisted synthesis. J Phys Chem C, 2011, 115: 744–750

    Article  CAS  Google Scholar 

  41. Yilmaz B, Müller U, Feyen M, Maurer S, Zhang H, Meng X, Xiao F-S, Bao X, Zhang W, Imai H, Yokoi T, Tatsumi T, Gies H, De Baerdemaeker T, de Vos D. A new catalyst platform: zeolite Beta from template-free synthesis. Catal Sci Technol, 2013, 3: 2580–2586

    Article  CAS  Google Scholar 

  42. Ren L, Li C, Fan F, Guo Q, Liang D, Feng Z, Li C, Li S, Xiao F-S. UV-Raman and NMR spectroscopic studies on the crystallization of Zeolite A and a new synthetic route. Chem Eur J, 2011, 17: 6162–6169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangju Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Wu, Q., Chen, F. et al. Solvent-free synthesis of zeolite catalysts. Sci. China Chem. 58, 6–13 (2015). https://doi.org/10.1007/s11426-014-5252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5252-2

Keywords

Navigation