Skip to main content
Log in

Enhanced intermolecular interactions to improve twisted polymer photovoltaic performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In polymer solar cells (PSCs), twisted polymer donors usually have low photovoltaic efficiencies due to their poor photoactive layer morphologies. Herein, we successfully improved twisted polymer (PBDT-3T) photovoltaic efficiency by employing C=O groups (PBDT-3TCO) to enhance intermolecular interactions. The maximum power conversion efficiency (PCE) of PBDT-3T is only 1.05%, while the PCE of PBDT-3TCO reaches 11.77% in non-fullerene (NF) PSCs. Both polymers-based PSCs show very similar open-circuit voltages but remarkable differences in their short-circuit currents and fill factors. The single crystals of both functionalized terthiophenes with methyl substituents demonstrate that the terthiophene with C=O units changes molecular pattern by forming intra/inter molecular S⋯O and O⋯H interactions but its molecular planarity does not significantly improve. Our comparative studies show that PBDT-3TCO with C=O units possesses a strong aggregation property and optimal photoactive layer morphology in NF PSCs. This study provides important insight into the design of high-performance twisted polymer donors for NF PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem Rev, 2014, 114: 7006–7043

    Article  CAS  PubMed  Google Scholar 

  3. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  4. Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209

    Article  CAS  Google Scholar 

  5. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    Article  CAS  Google Scholar 

  6. Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011–15018

    Article  CAS  PubMed  Google Scholar 

  7. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  8. Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30: 1703973

    Article  CAS  Google Scholar 

  9. Xu SJ, Zhou Z, Liu W, Zhang Z, Liu F, Yan H, Zhu X. Adv Mater, 2017, 29: 1704510

    Article  CAS  Google Scholar 

  10. Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z’, Hou J. J Am Chem Soc, 2013, 135: 8464–8467

    Article  CAS  PubMed  Google Scholar 

  11. Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang B, Zhang S, Chen Y, Cui Y, Liu D, Yao H, Zhang J, Wei Z, Hou J. Macromolecules, 2017, 50: 1453–1462

    Article  CAS  Google Scholar 

  13. Mukherjee S, Proctor CM, Bazan GC, Nguyen TQ, Ade H. Adv Energy Mater, 2015, 5: 1500877

    Article  CAS  Google Scholar 

  14. Heeger AJ. Adv Mater, 2014, 26: 10–28

    Article  CAS  PubMed  Google Scholar 

  15. Jo J, Na SI, Kim SS, Lee TW, Chung Y, Kang SJ, Vak D, Kim DY. Adv Funct Mater, 2009, 19: 2398–2406

    Article  CAS  Google Scholar 

  16. Lim KG, Park JM, Mangold H, Laquai F, Choi TL, Lee TW. ChemSusChem, 2015, 8: 337–344

    Article  CAS  PubMed  Google Scholar 

  17. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  18. Liu D, Yang B, Jang B, Xu B, Zhang S, He C, Woo HY, Hou J. Energy Environ Sci, 2017, 10: 546–551

    Article  CAS  Google Scholar 

  19. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734–4739

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Liu Y, Zhang L, Chow PCY, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc, 2017, 139: 6298–6301

    Article  CAS  PubMed  Google Scholar 

  21. Huang H, Yang L, Facchetti A, Marks TJ. Chem Rev, 2017, 117: 10291–10318

    Article  CAS  PubMed  Google Scholar 

  22. Guo X, Quinn J, Chen Z, Usta H, Zheng Y, Xia Y, Hennek JW, Ortiz RP, Marks TJ, Facchetti A. J Am Chem Soc, 2013, 135: 1986–1996

    Article  CAS  PubMed  Google Scholar 

  23. Dai YZ, Ai N, Lu Y, Zheng YQ, Dou JH, Shi K, Lei T, Wang JY, Pei J. Chem Sci, 2016, 7: 5753–5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Price SC, Stuart AC, Yang L, Zhou H, You W. J Am Chem Soc, 2011, 133: 4625–4631

    Article  CAS  PubMed  Google Scholar 

  25. Min J, Zhang ZG, Zhang S, Li Y. Chem Mater, 2012, 24: 3247–3254

    Article  CAS  Google Scholar 

  26. Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, Peng J, Ma Y, Cao Y. Adv Mater, 2014, 26: 2586–2591

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang S, Qin Y, Uddin MA, Jang B, Zhao W, Liu D, Woo HY, Hou J. Macromolecules, 2016, 49: 2993–3000

    Article  CAS  Google Scholar 

  29. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089

    Article  CAS  Google Scholar 

  30. Chen S, Cho HJ, Lee J, Yang Y, Zhang ZG, Li Y, Yang C. Adv Energy Mater, 2017, 7: 1701125

    Article  CAS  Google Scholar 

  31. Wang HJ, Tzeng JY, Chou CW, Huang CY, Lee RH, Jeng RJ. Polym Chem, 2013, 4: 506–519

    Article  CAS  Google Scholar 

  32. Xia D, Guo X, Chen L, Baumgarten M, Keerthi A, Müllen K. Angew Chem Int Ed, 2016, 55: 941–944

    Article  CAS  Google Scholar 

  33. Wudarczyk J, Papamokos G, Margaritis V, Schollmeyer D, Hinkel F, Baumgarten M, Floudas G, Müllen K. Angew Chem Int Ed, 2016, 55: 3220–3223

    Article  CAS  Google Scholar 

  34. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  PubMed  Google Scholar 

  35. Takai A, Chen Z, Yu X, Zhou N, Marks TJ, Facchetti A. Chem Mater, 2016, 28: 5772–5783

    Article  CAS  Google Scholar 

  36. Blanchard P, Brisset H, Illien B, Riou A, Roncali J. J Org Chem, 1997, 62: 2401–2408

    Article  CAS  PubMed  Google Scholar 

  37. Chaloner PA, Gunatunga SR, Hitchcock PB. J Chem Soc Perkin Trans 2, 1997, 1: 1597–1604

    Article  Google Scholar 

  38. Osaka I, Shimawaki M, Mori H, Doi I, Miyazaki E, Koganezawa T, Takimiya K. J Am Chem Soc, 2012, 134: 3498–3507

    Article  CAS  PubMed  Google Scholar 

  39. Zhang S, Yang B, Liu D, Zhang H, Zhao W, Wang Q, He C, Hou J. Macromolecules, 2016, 49: 120–126

    Article  CAS  Google Scholar 

  40. Mihailetchi VD, Wildeman J, Blom PWM. Phys Rev Lett, 2005, 94: 126602

    Article  CAS  PubMed  Google Scholar 

  41. Kyaw AKK, Wang DH, Luo C, Cao Y, Nguyen TQ, Bazan GC, Heeger AJ. Adv Energy Mater, 2014, 4: 1301469

    Article  CAS  Google Scholar 

  42. Min J, Luponosov YN, Gasparini N, Richter M, Bakirov AV, Shcherbina MA, Chvalun SN, Grodd L, Grigorian S, Ameri T, Ponomarenko SA, Brabec CJ. Adv Energy Mater, 2015, 5: 1500386

    Article  CAS  Google Scholar 

  43. Murgatroyd PN. J Phys D-Appl Phys, 1970, 3: 151–156

    Article  Google Scholar 

  44. Azimi H, Senes A, Scharber MC, Hingerl K, Brabec CJ. Adv Energy Mater, 2011, 1: 1162–1168

    Article  CAS  Google Scholar 

  45. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207

    Article  CAS  Google Scholar 

  46. Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J. Adv Funct Mater, 2004, 14: 38–44

    Article  CAS  Google Scholar 

  47. Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H. J Phys-Conf Ser, 2010, 247: 012007

    Article  Google Scholar 

  48. Wu Y, Wang Z, Meng X, Ma W. Prog Chem, 2017, 29: 93–101

    Google Scholar 

  49. Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110

    Article  CAS  PubMed  Google Scholar 

  50. Carpenter JH, Hunt A, Ade H. J Electron Spectr Related Phenom, 2015, 200: 2–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51703228, 21835006, 21504066), the Chinese Academy of Sciences (XDB12030200), and the Ministry of Science and Technology (2016YFA0200700). X-ray data was acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Chenhui Zhu at beamline 7.3.3, and Cheng Wang at beamline 11.0.1.2 for assistance with data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ma or Jianhui Hou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Xin, J., Shi, L. et al. Enhanced intermolecular interactions to improve twisted polymer photovoltaic performance. Sci. China Chem. 62, 370–377 (2019). https://doi.org/10.1007/s11426-018-9408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9408-7

Keywords

Navigation