Skip to main content
Log in

Ultra-sensitive detection of uranyl ions with a specially designed high-efficiency SERS-based microfluidic device

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The uranyl ion (UO22+) poses high risks to human health and the environment, hence its detection and monitoring is of utmost significance. However, the development of an ultra-sensitive, high-efficiency and convenient approach for on-site detection of UO22+ remains a challenge. Herein, a reliable and reusable surface-enhanced Raman spectroscopy (SERS)-based microfluidic biosensor was developed for rapid detection of UO22+ in real samples. The detection protocol involved the reaction of 5′-Rhodamine B (RhB)-labeled double-stranded DNA for UO22+-specific DNAzyme-cleavage reaction in a U-shaped microchannel. Then, the reaction products were delivered into three parallel samples for high-throughput tests by SERS biochips, where 3D ZnO-Ag mesoporous nanosheet arrays (MNSs) were modified with a single-stranded DNA (ssDNA). The ssDNA was sequence-complementary with the 5′-RhB-labeled cleaved-stranded DNA (csDNA) from the reaction products. By the hybridization of ssDNA and csDNA, the signal probe RhB was fixed close to the surface of the ZnO-Ag MNSs to enhance the Raman signal. The limit of detection for UO22+ with the microfluidic-SERS biosensor was 3.71×10−15 M. An over 20,000-fold selectivity towards UO22+ response was also achieved in the presence of 15 other metal ions. The high-throughput microfluidic-SERS biosensor operated well for practical UO22+ detection, with excellent recoveries in contaminated river and tap water from 95.2% to 106.3% (relative standard deviation (RSD) <6.0%, n=6). Although the SERS-based microfluidic biosensor developed in this study was deployed for the detection of UO22+, the reusable and high-efficiency system may be expanded to the detection of other analytes on-site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark DL, Conradson SD, Donohoe RJ, Keogh DW, Morris DE, Palmer PD, Rogers RD, Tait CD. Inorg Chem, 1999, 38: 1456–1466

    Article  CAS  Google Scholar 

  2. Eliet V, Bidoglio G, Omenetto N, Parma L, Grenthe I. Faraday Trans, 1995, 91: 2275–2285

    Article  Google Scholar 

  3. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB. J Toxicol Environ Health Part B, 2004, 7: 297–317

    Article  CAS  Google Scholar 

  4. Zhou P, Gu B. Environ Sci Technol, 2005, 39: 4435–4440

    Article  CAS  PubMed  Google Scholar 

  5. Abbasi SA. Int J Environ Anal Chem, 1989, 36: 163–172

    Article  CAS  Google Scholar 

  6. Lee JH, Wang Z, Liu J, Lu Y. J Am Chem Soc, 2008, 130: 14217–14226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gong L, Zhao Z, Lv YF, Huan SY, Fu T, Zhang XB, Shen GL, Yu RQ. Chem Commun, 2015, 51: 979–995

    Article  CAS  Google Scholar 

  8. Zhang XB, Kong RM, Lu Y. Annu Rev Anal Chem, 2011, 4: 105–128

    Article  CAS  Google Scholar 

  9. Huang Y, Fang L, Zhu Z, Ma Y, Zhou L, Chen X, Xu D, Yang C. Biosens Bioelectron, 2016, 85: 496–502

    Article  CAS  PubMed  Google Scholar 

  10. Hu L, Yan XW, Li Q, Zhang XJ, Shan D. J Hazard Mater, 2017, 329: 205–210

    Article  CAS  PubMed  Google Scholar 

  11. Gupta R, Sundararajan M, Gamare JS. Anal Chem, 2017, 89: 8156–8161

    Article  CAS  PubMed  Google Scholar 

  12. Ziólkowski R, Górski L, Malinowska E. Sens Actuators B-Chem, 2017, 238: 540–547

    Article  CAS  Google Scholar 

  13. Roozbahani GM, Chen X, Zhang Y, Xie R, Ma R, Li D, Li H, Guan X. ACS Sens, 2017, 2: 703–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yun W, Wu H, Liu X, Zhong H, Fu M, Yang L, Huang Y. Sens Actuators B-Chem, 2018, 255: 1920–1926

    Article  CAS  Google Scholar 

  15. Li MH, Wang YS, Cao JX, Chen SH, Tang X, Wang XF, Zhu YF, Huang YQ. Biosens Bioelectron, 2015, 72: 294–299

    Article  CAS  PubMed  Google Scholar 

  16. Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang PH, Huang TJ. ACS Nano, 2014, 8: 12175–12184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi I, Huh YS, Erickson D. Lab Chip, 2011, 11: 632–638

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y, Liu K, Miao J, Wang Z, Tian B, Zhang L, Li Q, Fan S, Jiang K. Nano Lett, 2010, 10: 1747–1753

    Article  CAS  PubMed  Google Scholar 

  19. Ngo HT, Wang HN, Fales AM, Vo-Dinh T. Anal Chem, 2013, 85: 6378–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen L, Choo J. ACS Nano, 2017, 11: 4926–4933

    Article  CAS  PubMed  Google Scholar 

  21. Teiten B, Burneau A. J Raman Spectrosc, 1997, 28: 879–884

    Article  CAS  Google Scholar 

  22. Wang S, Zou S, Yang S, Wu H, Jia J, Li Y, Zhang Z, Jiang J, Chu M, Wang X. Sens Actuators B-Chem, 2018, 265: 539–546

    Article  CAS  Google Scholar 

  23. Ruan C, Luo W, Wang W, Gu B. Anal Chim Acta, 2007, 605: 80–86

    Article  CAS  PubMed  Google Scholar 

  24. Bao L, Mahurin SM, Haire RG, Dai S. Anal Chem, 2003, 75: 6614–6620

    Article  CAS  PubMed  Google Scholar 

  25. Bhandari D, Wells SM, Retterer ST, Sepaniak MJ. Anal Chem, 2009, 81: 8061–8067

    Article  CAS  PubMed  Google Scholar 

  26. Leverette CL, Villa-Aleman E, Jokela S, Zhang Z, Liu Y, Zhao Y, Smith SA. Vibal Spectr, 2009, 50: 143–151

    Article  CAS  Google Scholar 

  27. Jiang J, Ma L, Chen J, Zhang P, Wu H, Zhang Z, Wang S, Yun W, Li Y, Jia J, Liao J. Microchim Acta, 2017, 184: 2775–2782

    Article  CAS  Google Scholar 

  28. Dutta S, Ray C, Sarkar S, Pradhan M, Negishi Y, Pal T. ACS Appl Mater Interfaces, 2013, 5: 8724–8732

    Article  CAS  PubMed  Google Scholar 

  29. Gwak R, Kim H, Yoo SM, Lee SY, Lee GJ, Lee MK, Rhee CK, Kang T, Kim B. Sci Rep, 2016, 6: 19646–19653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang Z, Yao D, Wen G, Li T, Chen B, Liang A. Plasmonics, 2013, 8: 803–810

    Article  CAS  Google Scholar 

  31. Xiao SJ, Zuo J, Zhu ZQ, Ouyang YZ, Zhang XL, Chen HW, Zhang L. Sens Actuators B-Chem, 2015, 210: 656–660

    Article  CAS  Google Scholar 

  32. Liu J, Meng G, Li Z, Huang Z, Li X. Nanoscale, 2015, 7: 18218–18224

    Article  CAS  PubMed  Google Scholar 

  33. Yu T, Zeng J, Lim B, Xia Y. Adv Mater, 2010, 22: 5188–5192

    Article  CAS  PubMed  Google Scholar 

  34. Sajanlal PR, Pradeep T. Nanoscale, 2012, 4: 3427–3437

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Meng G, Huang Z, Li Z, Zhou Q. Nanoscale, 2014, 6: 15280–15285

    Article  CAS  PubMed  Google Scholar 

  36. Sun K, Huang Q, Meng G, Lu Y. ACS Appl Mater Interfaces, 2016, 8: 5723–5728

    Article  CAS  PubMed  Google Scholar 

  37. He W, Xiao J, Zhang Z, Zhang W, Cao Y, He R, Chen Y. Microfluid Nanofuid, 2015, 19: 829–836

    Article  Google Scholar 

  38. Fu C, Wang Y, Chen G, Yang L, Xu S, Xu W. Anal Chem, 2015, 87: 9555–9558

    Article  CAS  PubMed  Google Scholar 

  39. Singh N, Ali MA, Rai P, Sharma A, Malhotra BD, John R. ACS Appl Mater Interfaces, 2017, 9: 33576–33588

    Article  CAS  PubMed  Google Scholar 

  40. Liu Q, Jiang L, Guo L. Small, 2013, 10: 48–51

    Article  CAS  PubMed  Google Scholar 

  41. Meagley KL, Garcia SP. Cryst Growth Des, 2012, 12: 707–713

    Article  CAS  Google Scholar 

  42. Zhang D, Wang S, Cheng K, Dai S, Hu B, Han X, Shi Q, Du Z. ACS Appl Mater Interfaces, 2012, 4: 2969–2977

    Article  CAS  PubMed  Google Scholar 

  43. Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C. Adv Mater, 2010, 22: 4136–4139

    Article  CAS  PubMed  Google Scholar 

  44. Meng X, Wang H, Chen N, Ding P, Shi H, Zhai X, Su Y, He Y. Anal Chem, 2018, 90: 5646–5653

    Article  CAS  PubMed  Google Scholar 

  45. Lu H, Zhu L, Zhang C, Chen K, Cui Y. Anal Chem, 2018, 90: 4535–4543

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Lin D, Sun Y, Yang L, Liu J. Chem Eur J, 2013, 19: 8789–8796

    Article  CAS  PubMed  Google Scholar 

  47. Zhu C, Meng G, Huang Q, Huang Z. J Hazard Mater, 2012, 211–212: 389–395

    Article  CAS  PubMed  Google Scholar 

  48. Yang S, Dai X, Boschitsch Stogin B, Wong TS. Proc Natl Acad Sci USA, 2016, 113: 268–273

    Article  CAS  PubMed  Google Scholar 

  49. He Y, Yang X, Yuan R, Chai Y. Anal Chem, 2017, 89: 8538–8544

    Article  CAS  PubMed  Google Scholar 

  50. Radi AE, Acero Sanchez JL, Baldrich E, O’Sullivan CK. J Am Chem Soc, 2006, 128: 117–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Challenge Project (TZ2018004), and the National Natural Science Foundation of China (21502179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wang, S., Liu, Y. et al. Ultra-sensitive detection of uranyl ions with a specially designed high-efficiency SERS-based microfluidic device. Sci. China Chem. 62, 1064–1071 (2019). https://doi.org/10.1007/s11426-019-9468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9468-x

Keywords

Navigation