Skip to main content
Log in

Over 16.7% efficiency of ternary organic photovoltaics by employing extra PC71BM as morphology regulator

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ternary organic photovoltaics (OPVs) are fabricated with PBDB-T-2Cl:Y6 (1:1.2, wt/wt) as the host system and extra PC71BM as the third component. The PBDB-T-2Cl:Y6 based binary OPVs exhibit a power conversion efficiency (PCE) of 15.49% with a short circuit current (JSC) of 24.98 mA cm−2, an open circuit voltage (VOC) of 0.868 V and a fill factor (FF) of 71.42%. A 16.71% PCE is obtained in the optimized ternary OPVs with PBDB-T-2Cl:Y6:PC71BM (1:1.2:0.2, wt/wt) active layer, resulting from the synchronously improved JSC of 25.44 mA cm−2, FF of 75.66% and the constant VOC of 0.868 V. The incorporated PC71BM may prefer to mix with Y6 to finely adjust phase separation, domain size and molecular arrangement in ternary active layers, which can be confirmed from the characterization on morphology, 2D grazing incidence small and wide-angle X-ray scattering, as well as Raman mapping. In addition, PC71BM may prefer to mix with Y6 to form efficient electron transport channels, which should be conducive to charge transport and collection in the optimized ternary OPVs. This work provides more insight into the underlying reasons of the third component on performance improvement of ternary OPVs, indicating ternary strategy should be an efficient method to optimize active layers for synchronously improving photon harvesting, exciton dissociation and charge transport, while keeping the simple cell fabrication technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma X, Gao W, Yu J, An Q, Zhang M, Hu Z, Wang J, Tang W, Yang C, Zhang F. Energy Environ Sci, 2018, 11: 2134–2141

    Article  CAS  Google Scholar 

  2. Hu Z, Wang J, Wang Z, Gao W, An Q, Zhang M, Ma X, Wang J, Miao J, Yang C, Zhang F. Nano Energy, 2019, 55: 424–432

    Article  CAS  Google Scholar 

  3. Xie Y, Huo L, Fan B, Fu H, Cai Y, Zhang L, Li Z, Wang Y, Ma W, Chen Y, Sun Y. Adv Funct Mater, 2018, 28: 1800627

    Article  CAS  Google Scholar 

  4. Xiao Z, Yang S, Yang Z, Yang J, Yip HL, Zhang F, He F, Wang T, Wang J, Yuan Y, Yang H, Wang M, Ding L. Adv Mater, 2018, 270: 1804790

    Google Scholar 

  5. An Q, Zhang F, Gao W, Sun Q, Zhang M, Yang C, Zhang J. Nano Energy, 2018, 45: 177–183

    Article  CAS  Google Scholar 

  6. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    Article  CAS  Google Scholar 

  7. Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z. Nat Commun, 2016, 7: 13740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258–265

    Article  CAS  Google Scholar 

  9. Gao HH, Sun Y, Wan X, Ke X, Feng H, Kan B, Wang Y, Zhang Y, Li C, Chen Y. Adv Sci, 2018, 5: 1800307

    Article  CAS  Google Scholar 

  10. Zhang M, Zhang F, An Q, Sun Q, Wang W, Zhang J, Tang W. Nano Energy, 2016, 22: 241–254

    Article  CAS  Google Scholar 

  11. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    Article  CAS  Google Scholar 

  12. Miao J, Zhang F. Laser Photon Rev, 2019, 13: 1800204

    Google Scholar 

  13. Gao J, Ming R, An Q, Ma X, Zhang M, Miao J, Wang J, Yang C, Zhang F. Nano Energy, 2019, 63: 103888

    Article  CAS  Google Scholar 

  14. Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442–4453

    Article  CAS  Google Scholar 

  15. Hu Z, Wang Z, An Q, Zhang F. Sci Bull, 2019, https://doi.org/10.1016/j.scib.2019.09.016

    Article  CAS  Google Scholar 

  16. Ma X, Luo M, Gao W, Yuan J, An Q, Zhang M, Hu Z, Gao J, Wang J, Zou Y, Yang C, Zhang F. J Mater Chem A, 2019, 7: 7843–7851

    Article  CAS  Google Scholar 

  17. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  18. Li K, Wu Y, Tang Y, Pan M-, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728

    Article  CAS  Google Scholar 

  19. Chen S, Lee SM, Xu J, Lee J, Lee KC, Hou T, Yang Y, Jeong M, Lee B, Cho Y, Jung S, Oh J, Zhang ZG, Zhang C, Xiao M, Li Y, Yang C. Energy Environ Sci, 2018, 11: 2569–2580

    Article  CAS  Google Scholar 

  20. Zhang M, Xiao Z, Gao W, Liu Q, Jin K, Wang W, Mi Y, An Q, Ma X, Liu X, Yang C, Ding L, Zhang F. Adv Energy Mater, 2018, 8: 1801968

    Article  CAS  Google Scholar 

  21. An Q, Ma X, Gao J, Zhang F. Sci Bull, 2019, 64: 504–506

    Article  CAS  Google Scholar 

  22. Ma Y, Zhou X, Cai D, Tu Q, Ma W, Zheng Q. Mater Horiz, 2019, https://doi.org/10.1039/C9MH00993K

    Article  CAS  Google Scholar 

  23. Geng R, Song X, Feng H, Yu J, Zhang M, Gasparini N, Zhang Z, Liu F, Baran D, Tang W. ACS Energy Lett, 2019, 4: 763–770

    Article  CAS  Google Scholar 

  24. Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302

    Article  CAS  Google Scholar 

  25. Fu H, Li C, Bi P, Hao X, Liu F, Li Y, Wang Z, Sun Y. Adv Funct Mater, 2019, 29: 1807006

    Article  CAS  Google Scholar 

  26. Hedley G J, Ward A J, Alekseev A, Howells C T, Martins E R, Serrano L A, Cooke G, Ruseckas A, Samuel I D. Nat Commun, 2013, 4: 2867

    Article  PubMed  CAS  Google Scholar 

  27. Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868

    Article  CAS  Google Scholar 

  28. An M, Xie F, Geng X, Zhang J, Jiang J, Lei Z, He D, Xiao Z, Ding L. Adv Energy Mater, 2017, 7: 1602509

    Article  CAS  Google Scholar 

  29. Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C. Energy Environ Sci, 2018, 11: 841–849

    Article  CAS  Google Scholar 

  30. Ma X, Xiao Z, An Q, Zhang M, Hu Z, Wang J, Ding L, Zhang F. J Mater Chem A, 2018, 6: 21485–21492

    Article  CAS  Google Scholar 

  31. Miao J, Zhang F. J Mater Chem C, 2019, 7: 1741–1791

    Article  CAS  Google Scholar 

  32. Zhang M, Zhang F, An Q, Sun Q, Wang W, Ma X, Zhang J, Tang W. J Mater Chem A, 2017, 5: 3589–3598

    Article  CAS  Google Scholar 

  33. Hu Z, Zhang F, An Q, Zhang M, Ma X, Wang J, Zhang J, Wang J. ACS Energy Lett, 2018, 3: 555–561

    Article  CAS  Google Scholar 

  34. Jhuo HJ, Liao SH, Li YL, Yeh PN, Chen SA, Wu WR, Su CJ, Lee JJ, Yamada NL, Jeng US. Adv Funct Mater, 2016, 26: 3094–3104

    Article  CAS  Google Scholar 

  35. An Q, Wang J, Zhang F. Nano Energy, 2019, 60: 768–774

    Article  CAS  Google Scholar 

  36. Xu C, Wang J, An Q, Ma X, Hu Z, Gao J, Zhang J, Zhang F. Nano Energy, 2019, 104119

    Article  CAS  Google Scholar 

  37. Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J. Nano Lett, 2017, 17: 1995–2002

    Article  CAS  PubMed  Google Scholar 

  38. Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395

    Article  CAS  PubMed  Google Scholar 

  39. Hu Z, Wang Z, Zhang F. J Mater Chem A, 2019, 7: 7025–7032

    Article  CAS  Google Scholar 

  40. Miao J, Du M, Fang Y, Zhang X, Zhang F. Sci China Chem, 2019, https://doi.org/10.1007/s11426-019-9582-7

    Article  CAS  Google Scholar 

  41. Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H. Energy Environ Sci, 2019, 12: 2529–2536

    Article  CAS  Google Scholar 

  42. An Q, Gao W, Zhang F, Wang J, Zhang M, Wu K, Ma X, Hu Z, Jiao C, Yang C. J Mater Chem A, 2018, 6: 2468–2475

    Article  CAS  Google Scholar 

  43. Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313

    Article  CAS  Google Scholar 

  44. Ma X, Mi Y, Zhang F, An Q, Zhang M, Hu Z, Liu X, Zhang J, Tang W. Adv Energy Mater, 2018, 8: 1702854

    Article  CAS  Google Scholar 

  45. Bi P, Xiao T, Yang X, Niu M, Wen Z, Zhang K, Qin W, So SK, Lu G, Hao X, Liu H. Nano Energy, 2018, 46: 81–90

    Article  CAS  Google Scholar 

  46. Li W, Yan Y, Gong Y, Cai J, Cai F, Gurney RS, Liu D, Pearson AJ, Lidzey DG, Wang T. Adv Funct Mater, 2018, 28: 1704212

    Article  CAS  Google Scholar 

  47. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

    Article  CAS  Google Scholar 

  48. Zhang T, Dement DB, Ferry VE, Holmes RJ. Nat Commun, 2019, 10: 1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019, https://doi.org/10.1007/s11426-019-9599-1

  50. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61675017), Beijing Natural Science Foundation (4192049). The authors gratefully acknowledge the assistance of the Shanghai Synchrotron Radiation Facility (beamline BL16B1) for GWAIXS and GISAXS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujun Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Wang, J., An, Q. et al. Over 16.7% efficiency of ternary organic photovoltaics by employing extra PC71BM as morphology regulator. Sci. China Chem. 63, 83–91 (2020). https://doi.org/10.1007/s11426-019-9634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9634-5

Keywords

Navigation