Skip to main content
Log in

Design of CuInS2 hollow nanostructures toward CO2 electroreduction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The sharp rise of CO2 in the atmosphere has become a potential threat to global climate, which results from the massive utilization of fossil fuel since the industry revolution. CO2 electroreduction provides us a new possibility of utilizing CO2 as a carbon feedstock for fuel and commercial chemicals generation. In this article, a new method is developed for synthesizing CuInS2 hollow nanostructures through the Kirkendall effect. The CuInS2 hollow nanostructures exhibit excellent catalytic activity for electrochemical reduction of CO2 with particular high selectivity, achieving high faradaic efficiency for HCOOH of 72.8% at −0.7 V. To elucidate the mechanisms, operando electrochemical Raman spectroscopy is employed to examine the CO2 reduction process. This work provides new insights into the design of hollow nanostructures toward electrocatalytic CO2 conversion and offers us an effective and reliable way for real-time investigation of electrochemical CO2 reduction reaction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71

    Article  CAS  Google Scholar 

  2. Lu L, Sun X, Ma J, Zhu Q, Wu C, Yang D, Han B. Sci China Chem, 2018, 61: 228–235

    Article  CAS  Google Scholar 

  3. Zhuang TT, Liang ZQ, Seifitokaldani A, Li Y, De Luna P, Burdyny T, Che F, Meng F, Min Y, Quintero-Bermudez R, Dinh CT, Pang Y, Zhong M, Zhang B, Li J, Chen PN, Zheng XL, Liang H, Ge WN, Ye BJ, Sinton D, Yu SH, Sargent EH. Nat Catal, 2018, 1: 421–428

    Article  CAS  Google Scholar 

  4. Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, García de Arquer FP, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH. Science, 2018, 360: 783–787

    Article  CAS  Google Scholar 

  5. Tomboc GM, Choi S, Kwon T, Hwang YJ, Lee K. Adv Mater, 2020, 32: 1908398

    Article  CAS  Google Scholar 

  6. Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. Angew Chem Int Ed, 2015, 54: 2146–2150

    Article  CAS  Google Scholar 

  7. Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. ACS Catal, 2016, 6: 6265–6274

    Article  Google Scholar 

  8. Zheng X, De Luna P, García de Arquer FP, Zhang B, Becknell N, Ross MB, Li Y, Banis MN, Li Y, Liu M, Voznyy O, Dinh CT, Zhuang T, Stadler P, Cui Y, Du X, Yang P, Sargent EH. Joule, 2017, 1: 794–805

    Article  CAS  Google Scholar 

  9. Anderson BD, Tracy JB. Nanoscale, 2014, 6: 12195–12216

    Article  CAS  Google Scholar 

  10. Zhu W, Chen Z, Pan Y, Dai R, Wu Y, Zhuang Z, Wang D, Peng Q, Chen C, Li Y. Adv Mater, 2019, 31: 1800426

    Article  Google Scholar 

  11. Liu Y, Liu X, Feng Q, He D, Zhang L, Lian C, Shen R, Zhao G, Ji Y, Wang D, Zhou G, Li Y. Adv Mater, 2016, 28: 4747–4754

    Article  CAS  Google Scholar 

  12. Armbruster M, Wowsnick G, Friedrich M, Heggen M, Cardoso-Gil R. J Am Chem Soc, 2011, 133: 9112–9118

    Article  Google Scholar 

  13. Yu L, Yu XY, Lou XWD. Adv Mater, 2018, 30: 1800939

    Article  Google Scholar 

  14. Mu L, Wang F, Sadtler B, Loomis RA, Buhro WE. ACS Nano, 2015, 9: 7419–7428

    Article  CAS  Google Scholar 

  15. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z. Adv Sci, 2018, 5: 1700275

    Article  Google Scholar 

  16. Liu S, Lu XF, Xiao J, Wang X, Lou XWD. Angew Chem Int Ed, 2019, 58: 13828–13833

    Article  CAS  Google Scholar 

  17. He Y, Jiang WJ, Zhang Y, Huang LB, Hu JS. J Mater Chem A, 2019, 7: 18428–18433

    Article  CAS  Google Scholar 

  18. Chernyshova IV, Somasundaran P, Ponnurangam S. Proc Natl Acad Sci USA, 2018, 115: E9261–E9270

    Article  CAS  Google Scholar 

  19. Rudolph WW, Irmer G, Königsberger E. Dalton Trans, 2008, 900–908

    Google Scholar 

  20. Hu C, Zhang L, Li L, Zhu W, Deng W, Dong H, Zhao ZJ, Gong J. Sci China Chem, 2019, 62: 1030–1036

    Article  CAS  Google Scholar 

  21. Nie X, Luo W, Janik MJ, Asthagiri A. J Catal, 2014, 312: 108–122

    Article  CAS  Google Scholar 

  22. Chen LD, Urushihara M, Chan K, Nørskov JK. ACS Catal, 2016, 6: 7133–7139

    Article  CAS  Google Scholar 

  23. Cheng T, Xiao H, Goddard Iii WA. J Am Chem Soc, 2016, 138: 13802–13805

    Article  CAS  Google Scholar 

  24. Ko J, Kim BK, Han JW. J Phys Chem C, 2016, 120: 3438–3447

    Article  CAS  Google Scholar 

  25. Chaplin RPS, Wragg AA. J Appl Electrochem, 2003, 33: 1107–1123

    Article  CAS  Google Scholar 

  26. Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM. J Phys Chem Lett, 2015, 6: 4073–4082

    Article  CAS  Google Scholar 

  27. Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrochim Acta, 1994, 39: 1833–1839

    Article  CAS  Google Scholar 

  28. Mendieta-Reyes NE, Cheuquepán W, Rodes A, Gómez R. ACS Catal, 2020, 10: 103–113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (2017YFA0207301), the National Natural Science Foundation of China (21725102, U1832156, 91961106), CAS Key Research Program of Frontier Sciences (QYZDB-SSW-SLH018), CAS Interdisciplinary Innovation Team, Youth Innovation Promotion Association of CAS (2019444), Science and Technological Fund of Anhui Province for Outstanding Youth (2008085J05), Chinese Academy of Sciences President’s International Fellowship Initiative (2019PC0114), China Postdoctoral Science Foundation (2019M652190), Young Elite Scientist Sponsorship Program by CAST, and DNL Cooperation Fund, CAS (DNL201922). We thank the support from USTC Center for Micro- and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ran Long or Yujie Xiong.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Chen, S., Long, R. et al. Design of CuInS2 hollow nanostructures toward CO2 electroreduction. Sci. China Chem. 63, 1721–1726 (2020). https://doi.org/10.1007/s11426-020-9853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9853-3

Keywords

Navigation