Skip to main content
Log in

Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic thermally activated delayed fluorescence (TADF) emitters have attracted increasing concerns, owing to their atypical photophysical features that can pave the way to the innovative engineering applications. As cutting-edge type of luminescent molecules, however, most of them only exert a single-wavelength emission from the lowest excited state, according to Kasha’s rule. To develop their potential applications in multicolor luminescence and multi-functional luminescent probes for biological imaging, researchers have begun to turn their attention to design organic TADF molecules with dual-emission characteristics, by employing an additional fluorescence, phosphorescence, or TADF signal within a single-component system. We herein summarized the design principles as well as the luminescence mechanism of organic donor-acceptor TADF compounds with dual-emission characteristics, the superiority of which can cover unique material applications in modern luminescence-related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem Soc Rev, 2017, 46: 915–1016

    Article  Google Scholar 

  2. Jeon SK, Lee HL, Yook KS, Lee JY. Adv Mater, 2019, 31: 1803524

    Article  Google Scholar 

  3. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C. Nat Photon, 2014, 8: 326–332

    Article  Google Scholar 

  4. Yu T, Liu L, Xie Z, Ma Y. Sci China Chem, 2015, 58: 907–915

    Article  Google Scholar 

  5. Li X, Baryshnikov G, Ding L, Bao X, Li X, Lu J, Liu M, Shen S, Luo M, Zhang M, Ågren H, Wang X, Zhu L. Angew Chem Int Ed, 2020, 59: 7548–7554

    Article  Google Scholar 

  6. Chen W, Song F. Chin Chem Lett, 2019, 30: 1717–1730

    Article  Google Scholar 

  7. Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem Rev, 2018, 118: 1770–1839

    Article  Google Scholar 

  8. Zhang Q, Xu S, Li M, Wang Y, Zhang N, Guan Y, Chen M, Chen CF, Hu HY. Chem Commun, 2019, 55: 5639–5642

    Article  Google Scholar 

  9. Wu Z, Liu Y, Yu L, Zhao C, Yang D, Qiao X, Chen J, Yang C, Kleemann H, Leo K, Ma D. Nat Commun, 2019, 10: 2380

    Article  Google Scholar 

  10. Vendrell M, Zhai D, Er JC, Chang YT. Chem Rev, 2012, 112: 4391–4420

    Article  Google Scholar 

  11. Peng X, Yang Z, Wang J, Fan J, He Y, Song F, Wang B, Sun S, Qu J, Qi J, Yan M. J Am Chem Soc, 2011, 133: 6626–6635

    Article  Google Scholar 

  12. Pu KY, Liu B. Adv Funct Mater, 2011, 21: 3408–3423

    Article  Google Scholar 

  13. Zhang Y, Zhang D, Tsuboi T, Qiu Y, Duan L. Sci China Chem, 2019, 62: 393–402

    Article  Google Scholar 

  14. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234–238

    Article  Google Scholar 

  15. Rajamalli P, Senthilkumar N, Huang PY, Ren-Wu CC, Lin HW, Cheng CH. J Am Chem Soc, 2017, 139: 10948–10951

    Article  Google Scholar 

  16. Etherington MK, Gibson J, Higginbotham HF, Penfold TJ, Monkman AP. Nat Commun, 2016, 7: 13680

    Article  Google Scholar 

  17. Jin J, Jiang H, Yang Q, Tang L, Tao Y, Li Y, Chen R, Zheng C, Fan Q, Zhang KY, Zhao Q, Huang W. Nat Commun, 2020, 11: 842

    Article  Google Scholar 

  18. Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv Mater, 2014, 26: 7931–7958

    Article  Google Scholar 

  19. Liu Y, Li C, Ren Z, Yan S, Bryce MR. Nat Rev Mater, 2018, 3: 18020

    Article  Google Scholar 

  20. Ni F, Li N, Zhan L, Yang C. Adv Opt Mater, 2020, 8: 1902187

    Article  Google Scholar 

  21. Wang J, Huang Z, Ma X, Tian H. Angew Chem Int Ed, 2020, 59: 9928–9933

    Article  Google Scholar 

  22. Wu H, Zhou Y, Yin L, Hang C, Li X, Ågren H, Yi T, Zhang Q, Zhu L. J Am Chem Soc, 2017, 139: 785–791

    Article  Google Scholar 

  23. Zhou Y, Baryshnikov G, Li X, Zhu M, Ågren H, Zhu L. Chem Mater, 2018, 30: 8008–8016

    Article  Google Scholar 

  24. Zhou Y, Hua P, Wu B, Bao X, Li X, Zhu L. Sci China Chem, 2019, 62: 220–225

    Article  Google Scholar 

  25. Stockmann A, Kurzawa J, Fritz N, Acar N, Schneider S, Daub J, Engl R, Clark T. J Phys Chem A, 2002, 106: 7958–7970

    Article  Google Scholar 

  26. Acar N, Kurzawa J, Fritz N, Stockmann A, Roman C, Schneider S, Clark T. Phys Chem A, 2003, 107: 9530–9541

    Article  Google Scholar 

  27. Tanaka H, Shizu K, Nakanotani H, Adachi C. Phys Chem C, 2014, 118: 15985–15994

    Article  Google Scholar 

  28. Etherington MK, Franchello F, Gibson J, Northey T, Santos J, Ward JS, Higginbotham HF, Data P, Kurowska A, Dos Santos PL, Graves DR, Batsanov AS, Dias FB, Bryce MR, Penfold TJ, Monkman AP. Nat Commun, 2017, 8: 14987

    Article  Google Scholar 

  29. Okazaki M, Takeda Y, Data P, Pander P, Higginbotham H, Monkman AP, Minakata S. Chem Sci, 2017, 8: 2677–2686

    Article  Google Scholar 

  30. Xiang S, Guo R, Huang Z, Lv X, Sun S, Chen H, Zhang Q, Wang L. Dyes Pigments, 2019, 170: 107636

    Article  Google Scholar 

  31. Takeda Y, Kaihara T, Okazaki M, Higginbotham H, Data P, Tohnai N, Minakata S. Chem Commun, 2018, 54: 6847–6850

    Article  Google Scholar 

  32. de Sa Pereira D, Lee DR, Kukhta NA, Lee KH, Kim CL, Batsanov AS, Lee JY, Monkman AP. Mater Chem C, 2019, 7: 10481–10490

    Article  Google Scholar 

  33. Wang K, Zheng CJ, Liu W, Liang K, Shi YZ, Tao SL, Lee CS, Ou XM, Zhang XH. Adv Mater, 2017, 29: 1701476

    Article  Google Scholar 

  34. Li W, Cai X, Li B, Gan L, He Y, Liu K, Chen D, Wu Y, Su S. Angew Chem Int Ed, 2019, 58: 582–586

    Article  Google Scholar 

  35. Park S, Kwon OH, Lee YS, Jang DJ, Park SY. J Phys Chem A, 2007, 111: 9649–9653

    Article  Google Scholar 

  36. Mamada M, Inada K, Komino T, Potscavage WJ Jr., Nakanotani H, Adachi C. ACS Cent Sci, 2017, 3: 769–777

    Article  Google Scholar 

  37. Padalkar VS, Seki S. Chem Soc Rev, 2016, 45: 169–202

    Article  Google Scholar 

  38. Jiang G, Li F, Fan J, Song Y, Wang CK, Lin L. J Mater Chem C, 2020, 8: 98–108

    Article  Google Scholar 

  39. Cao Y, Eng J, Penfold TJ. J Phys Chem A, 2019, 123: 2640–2649

    Article  Google Scholar 

  40. Zhang Z, Chen YA, Hung WY, Tang WF, Hsu YH, Chen CL, Meng FY, Chou PT. Chem Mater, 2016, 28: 8815–8824

    Article  Google Scholar 

  41. Wu K, Zhang T, Wang Z, Wang L, Zhan L, Gong S, Zhong C, Lu ZH, Zhang S, Yang C. J Am Chem Soc, 2018, 140: 8877–8886

    Article  Google Scholar 

  42. Druzhinin SI, Galievsky VA, Demeter A, Kovalenko SA, Senyushkina T, Dubbaka SR, Knochel P, Mayer P, Grosse C, Stalke D, Zachariasse KA. J Phys Chem A, 2015, 119: 11820–11836

    Article  Google Scholar 

  43. Chen DG, Ranganathan R, Lin JA, Huang CY, Ho ML, Chi Y, Chou PT. J Phys Chem C, 2019, 123: 4022–4028

    Article  Google Scholar 

  44. Yao L, Pan Y, Tang X, Bai Q, Shen F, Li F, Lu P, Yang B, Ma Y. J Phys Chem C, 2015, 119: 17800–17808

    Article  Google Scholar 

  45. Gibson J, Monkman AP, Penfold TJ. ChemPhysChem, 2016, 17: 2956–2961

    Article  Google Scholar 

  46. Geng Y, D’Aleo A, Inada K, Cui L, Kim JU, Nakanotani H, Adachi C. Angew Chem Int Ed, 2017, 56: 16536–16540

    Article  Google Scholar 

  47. Li X, Baryshnikov G, Deng C, Bao X, Wu B, Zhou Y, Ågren H, Zhu L. Nat Commun, 2019, 10: 731

    Article  Google Scholar 

  48. Huang R, Avó J, Northey T, Chaning-Pearce E, dos Santos PL, Ward JS, Data P, Etherington MK, Fox MA, Penfold TJ, Berberan-Santos MN, Lima JC, Bryce MR, Dias FB. J Mater Chem C, 2017, 5: 6269–6280

    Article  Google Scholar 

  49. Bhattacharjee I, Acharya N, Bhatia H, Ray D. J Phys Chem Lett, 2018, 9: 2733–2738

    Article  Google Scholar 

  50. Bhattacharjee I, Acharya N, Ray D. Chem Commun, 2019, 55: 1899–1902

    Article  Google Scholar 

  51. Pashazadeh R, Pander P, Bucinskas A, Skabara PJ, Dias FB, Grazulevicius JV. Chem Commun, 2018, 54: 13857–13860

    Article  Google Scholar 

  52. Sun C, Ran X, Wang X, Cheng Z, Wu Q, Cai S, Gu L, Gan N, Shi H, An Z, Shi H, Huang W. J Phys Chem Lett, 2018, 9: 335–339

    Article  Google Scholar 

  53. Pashazadeh R, Pander P, Lazauskas A, Dias FB, Grazulevicius JV. J Phys Chem Lett, 2018, 9: 1172–1177

    Article  Google Scholar 

  54. Xie Z, Huang Q, Yu T, Wang L, Mao Z, Li W, Yang Z, Zhang Y, Liu S, Xu J, Chi Z, Aldred MP. Adv Funct Mater, 2017, 27: 1703918

    Article  Google Scholar 

  55. Chen J, Yu T, Ubba E, Xie Z, Yang Z, Zhang Y, Liu S, Xu J, Aldred MP, Chi Z. Adv Opt Mater, 2019, 7: 1801593

    Article  Google Scholar 

  56. Xie Z, Su T, Ubba E, Deng H, Mao Z, Yu T, Zheng T, Zhang Y, Liu S, Chi Z. J Mater Chem C, 2019, 7: 3300–3305

    Article  Google Scholar 

  57. Cai X, Qiao Z, Li M, Wu X, He Y, Jiang X, Cao Y, Su S. Angew Chem Int Ed, 2019, 58: 13522–13531

    Article  Google Scholar 

  58. Hu Y, Wang Z, Jiang X, Cai X, Su SJ, Huang F, Cao Y. Chem Commun, 2018, 54: 7850–7853

    Article  Google Scholar 

  59. Zhang D, Suzuki K, Song X, Wada Y, Kubo S, Duan L, Kaji H. ACS Appl Mater Interfaces, 2019, 11: 7192–7198

    Article  Google Scholar 

  60. Xu S, Liu T, Mu Y, Wang YF, Chi Z, Lo CC, Liu S, Zhang Y, Lien A, Xu J. Angew Chem Int Ed, 2015, 54: 874–878

    Article  Google Scholar 

  61. Xie Z, Chen C, Xu S, Li J, Zhang Y, Liu S, Xu J, Chi Z. Angew Chem Int Ed, 2015, 54: 7181–7184

    Article  Google Scholar 

  62. Zhang Q, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C. J Am Chem Soc, 2012, 134: 14706–14709

    Article  Google Scholar 

  63. Xu B, Mu Y, Mao Z, Xie Z, Wu H, Zhang Y, Jin C, Chi Z, Liu S, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Chem Sci, 2016, 7: 2201–2206

    Article  Google Scholar 

  64. Luo M, Li X, Ding L, Baryshnikov G, Shen S, Zhu M, Zhou L, Zhang M, Lu J, Ågren H, Wang X-, Zhu L. Angew Chem Int Ed, 2020, 59: 17018–17025

    Article  Google Scholar 

  65. Lin JA, Li SW, Liu ZY, Chen DG, Huang CY, Wei YC, Chen YY, Tsai ZH, Lo CY, Hung WY, Wong KT, Chou PT. Chem Mater, 2019, 31: 5981–5992

    Article  Google Scholar 

  66. He Z, Cai X, Wang Z, Chen D, Li Y, Zhao H, Liu K, Cao Y, Su SJ. Sci China Chem, 2018, 61: 677–686

    Article  Google Scholar 

  67. Marghad I, Kim DH, Tian X, Mathevet F, Gosmini C, Ribierre JC, Adachi C. ACS Omega, 2018, 3: 2254–2260

    Article  Google Scholar 

  68. Wang K, Shi YZ, Zheng CJ, Liu W, Liang K, Li X, Zhang M, Lin H, Tao SL, Lee CS, Ou XM, Zhang XH. ACS Appl Mater Interfaces, 2018, 10: 31515–31525

    Article  Google Scholar 

  69. Ban X, Chen F, Zhao Y, Zhu A, Tong Z, Jiang W, Sun Y. ACS Appl Mater Interfaces, 2018, 10: 37335–37344

    Article  Google Scholar 

  70. Cho YJ, Jeon SK, Lee SS, Yu E, Lee JY. Chem Mater, 2016, 28: 5400–5405

    Article  Google Scholar 

  71. Kim M, Choi JM, Lee JY. Chem Commun, 2016, 52: 10032–10035

    Article  Google Scholar 

  72. Seo JA, Im Y, Han SH, Lee CW, Lee JY. ACS Appl Mater Interfaces, 2017, 9: 37864–37872

    Article  Google Scholar 

  73. Guo J, Zhao Z, Tang BZ. Adv Opt Mater, 2018, 6: 1800264

    Article  Google Scholar 

  74. Guo J, Li XL, Nie H, Luo W, Hu R, Qin A, Zhao Z, Su SJ, Tang BZ. Chem Mater, 2017, 29: 3623–3631

    Article  Google Scholar 

  75. Li C, Nobuyasu RS, Wang Y, Dias FB, Ren Z, Bryce MR, Yan S. Adv Opt Mater, 2017, 5: 1700435

    Article  Google Scholar 

  76. Huang W. Sci China Chem, 2017, 60: 1147–1148

    Article  Google Scholar 

  77. Zhang DW, Li M, Chen CF. Chem Soc Rev, 2020, 49: 1331–1343

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Taiyuan University of Technology and the National Natural Science Foundation of China (21975046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuping Li, Jianjun Lu or Liangliang Zhu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting information

11426_2020_9908_MOESM1_ESM.pdf

Integrated Interface between Composite Electrolyte and Cathode with Low Resistance Enables Ultra-Long Cycle-Lifetime in Solid-State Lithium-Metal Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shen, S., Zhang, C. et al. Small-molecule based thermally activated delayed fluorescence materials with dual-emission characteristics. Sci. China Chem. 64, 534–546 (2021). https://doi.org/10.1007/s11426-020-9908-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9908-5

Keywords

Navigation