Skip to main content
Log in

Ultralong organic room-temperature phosphorescence of electron-donating and commercially available host and guest molecules through efficient Förster resonance energy transfer

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ultralong organic room-temperature phosphorescence (RTP) materials have attracted tremendous attention recently due to their diverse applications. Several ultralong organic RTP materials mimicking the host-guest architecture of inorganic systems have been exploited successfully. However, complicated synthesis and high expenditure are still inevitable in these studies. Herein, we develop a series of novel host-guest organic phosphorescence systems, in which all luminophores are electron-rich, commercially available and halogen-atom-free. The maximum phosphorescence efficiency and the longest lifetime could reach 23.6% and 362 ms, respectively. Experimental results and theoretical calculation indicate that the host molecules not only play a vital role in providing a rigid environment to suppress non-radiative decay of the guest, but also show a synergistic effect to the guest through Förster resonance energy transfer (FRET). The commercial availability, facile preparation and unique properties also make these new host-guest materials an excellent candidate for the anti-counterfeiting application. This work will inspire researchers to develop new RTP systems with different wavelengths from commercially available luminophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Liu W, Wang J, Gong Y, Liao Q, Dang Q, Li Z, Bo Z. Angew Chem Int Ed, 2020, 59: 20161–20166

    Google Scholar 

  2. He Z, Gao H, Zhang S, Zheng S, Wang Y, Zhao Z, Ding D, Yang B, Zhang Y, Yuan WZ. Adv Mater, 2019, 31: 1807222

    Google Scholar 

  3. Su Y, Phua SZF, Li Y, Zhou X, Jana D, Liu G, Lim WQ, Ong WK, Yang C, Zhao Y. Sci Adv, 2018, 4: eaas9732

    Google Scholar 

  4. Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem Rev, 2018, 118: 1770–1839

    Google Scholar 

  5. Yang J, Gao H, Wang Y, Yu Y, Gong Y, Fang M, Ding D, Hu W, Tang BZ, Li Z. Mater Chem Front, 2019, 3: 1391–1397

    Google Scholar 

  6. Yang Z, Xu C, Li W, Mao Z, Ge X, Huang Q, Deng H, Zhao J, Gu FL, Zhang Y, Chi Z. Angew Chem Int Ed, 2020, 59: 17451–17455

    Google Scholar 

  7. Bian L, Ma H, Ye W, Lv A, Wang H, Jia W, Gu L, Shi H, An Z, Huang W. Sci China Chem, 2020, 63: 1443–1448

    Google Scholar 

  8. Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. J Electrochem Soc, 1996, 143: 2670–2673

    Google Scholar 

  9. Li Y, Gecevicius M, Qiu J. Chem Soc Rev, 2016, 45: 2090–2136

    Google Scholar 

  10. Shi H, Song L, Ma H, Sun C, Huang K, Lv A, Ye W, Wang H, Cai S, Yao W, Zhang Y, Zheng R, An Z, Huang W. J Phys Chem Lett, 2019, 10: 595–600

    Google Scholar 

  11. Wang J, Gu X, Ma H, Peng Q, Huang X, Zheng X, Sung SHP, Shan G, Lam JWY, Shuai Z, Tang BZ. Nat Commun, 2018, 9: 2963

    Google Scholar 

  12. Cai S, Shi H, Tian D, Ma H, Cheng Z, Wu Q, Gu M, Huang L, An Z, Peng Q, Huang W. Adv Funct Mater, 2018, 28: 1705045

    Google Scholar 

  13. Lucenti E, Forni A, Botta C, Carlucci L, Giannini C, Marinotto D, Pavanello A, Previtali A, Righetto S, Cariati E. Angew Chem Int Ed, 2017, 56: 16302–16307

    Google Scholar 

  14. He Z, Zhao W, Lam JWY, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ. Nat Commun, 2017, 8: 416–423

    Google Scholar 

  15. Song X, Zhang D, Huang T, Cai M, Duan L. Sci China Chem, 2018, 61: 836–843

    Google Scholar 

  16. Yang Z, Mao Z, Zhang X, Ou D, Mu Y, Zhang Y, Zhao C, Liu S, Chi Z, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Angew Chem Int Ed, 2016, 55: 2181–2185

    Google Scholar 

  17. Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z. Nat Commun, 2018, 9: 840

    Google Scholar 

  18. Li Q, Li Z. Acc Chem Res, 2020, 53: 962–973

    Google Scholar 

  19. Salla CAM, Farias G, Rouzières M, Dechambenoit P, Durola F, Bock H, de Souza B, Bechtold IH. Angew Chem Int Ed, 2019, 58: 6982–6986

    Google Scholar 

  20. Yang J, Fang M, Li Z. Aggregate, 2020, 1: 6–18

    Google Scholar 

  21. Li D, Lu F, Wang J, Hu W, Cao XM, Ma X, Tian H. J Am Chem Soc, 2018, 140: 1916–1923

    Google Scholar 

  22. Wang J, Huang Z, Ma X, Tian H. Angew Chem Int Ed, 2020, 59: 9928–9933

    Google Scholar 

  23. Lei Y, Dai W, Guan J, Guo S, Ren F, Zhou Y, Shi J, Tong B, Cai Z, Zheng J, Dong Y. Angew Chem Int Ed, 2020, 59: 16054–16060

    Google Scholar 

  24. Shi H, An Z. Nat Photon, 2019, 13: 74–75

    Google Scholar 

  25. Kabe R, Adachi C. Nature, 2017, 550: 384–387

    Google Scholar 

  26. Zhang X, Du L, Zhao W, Zhao Z, Xiong Y, He X, Gao PF, Alam P, Wang C, Li Z, Leng J, Liu J, Zhou C, Lam JWY, Phillips DL, Zhang G, Tang BZ. Nat Commun, 2019, 10: 5161

    Google Scholar 

  27. Aonuma M, Oyamada T, Sasabe H, Miki T, Adachi C. Appl Phys Lett, 2007, 90: 183503

    Google Scholar 

  28. Wang Y, Yang J, Fang M, Yu Y, Zou B, Wang L, Tian Y, Cheng J, Tang BZ, Li Z. Matter, 2020, 3: 449–463

    Google Scholar 

  29. Kuila S, George SJ. Angew Chem Int Ed, 2020, 59: 9393–9397

    Google Scholar 

  30. Tian Y, Yang X, Gong Y, Wang Y, Fang M, Yang J, Tang Z, Li Z. Sci China Chem, 2020, 64: 445–451

    Google Scholar 

  31. Deng R, Wang J, Chen R, Huang W, Liu X. J Am Chem Soc, 2016, 138: 15972–15979

    Google Scholar 

  32. Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR. Nature, 2006, 440: 908–912

    Google Scholar 

  33. Sugiyama K, Yoshimura D, Miyamae T, Miyazaki T, Ishii H, Ouchi Y, Seki K. J Appl Phys, 1998, 83: 4928–4938

    Google Scholar 

  34. Fries F, Louis M, Scholz R, Gmelch M, Thomas H, Haft A, Reineke S. J Phys Chem A, 2020, 124: 479–485

    Google Scholar 

  35. Hirata S. J Mater Chem C, 2018, 6: 11785–11794

    Google Scholar 

  36. Wang H, Yue B, Xie Z, Gao B, Xu Y, Liu L, Sun H, Ma Y. Phys Chem Chem Phys, 2013, 15: 3527–3534

    Google Scholar 

  37. Főrster T. Discuss Faraday Soc, 1959, 27: 7–17

    Google Scholar 

  38. Förster T. Ann Phys, 1948, 437: 55–75

    Google Scholar 

  39. Yu X, Zhang H, Yu J. Aggregate, 2021, 2: 20–34

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102 and 21525417), the Natural Science Foundation of Guangdong Province (2019B030301003 and 2016A030312002), and the Innovation and Technology Commission of Hong Kong (ITC-CNERC14S01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Zheng or Anjun Qin.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting information

11426_2020_9980_MOESM1_ESM.docx

Ultralong Organic Room-Temperature Phosphorescence of Electron-donating and Commercially Available Host and Guest Molecules through Efficient Förster Resonance Energy Transfer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Y., Yang, J., Si, H. et al. Ultralong organic room-temperature phosphorescence of electron-donating and commercially available host and guest molecules through efficient Förster resonance energy transfer. Sci. China Chem. 64, 739–744 (2021). https://doi.org/10.1007/s11426-020-9980-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9980-4

Keywords

Navigation