Skip to main content
Log in

High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Side-chain engineering has been considered as one of the most promising strategies to optimize non-fullerene small-molecule acceptors (NFSMAs). Previous efforts were focused on the optimization of alkyl-chain length, shape, and branching sites. In this work, we propose that asymmetric side-chain engineering can effectively tune the properties of NFSMAs and improve the power conversion efficiency (PCE) for binary non-fullerene polymer solar cells (NFPSCs). Specifically, by introducing asymmetric side chains into the central core, both of the absorption spectra and molecule orientation of NFSMAs are efficiently tuned. When blended with polymer donor PM6, NFPSCs with EH-HD-4F (2-ethylhexyl and 2-hexyldecyl side chains) demonstrate a champion PCE of 18.38% with a short-circuit current density (JSC) of 27.48 mA cm2, an open circuit voltage (VOC) of 0.84 V, and a fill factor (FF) of 0.79. Further studies manifest that the proper asymmetric side chains in NFSMAs could induce more favorable face-on molecule orientation, enhance carrier mobilities, balance charge transport, and reduce recombination losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  2. Yu ZP, Yan K, Ullah W, Chen H, Li CZ. ACS Appl Polym Mater, 2021, 3: 60–92

    Article  CAS  Google Scholar 

  3. Huang F, Bo Z, Geng Y, Wang X, Wang L, Ma Y, Hou J, Hu W, Pei J, Dong H, Wang S, Li Z, Shuai Z, Li Y, Cao Y. Acta Polym Sin, 2019, 50: 988–1046

    CAS  Google Scholar 

  4. Zhang D, Fan B, Ying L, Li N, Brabec CJ, Huang F, Cao Y. SusMat, 2021, 1: 4–23

    Article  Google Scholar 

  5. Zhao R, Liu J, Wang L. Acc Chem Res, 2020, 53: 1557–1567

    Article  CAS  PubMed  Google Scholar 

  6. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Article  Google Scholar 

  7. Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F, Cao Y. Nano Energy, 2020, 72: 104718

    Article  CAS  Google Scholar 

  8. Po R, Carbonera C, Bernardi A, Camaioni N. Energy Environ Sci, 2011, 4: 285–310

    Article  CAS  Google Scholar 

  9. Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ. Nano Lett, 2005, 5: 579–583

    Article  CAS  PubMed  Google Scholar 

  10. Tang H, Liu Z, Tang Y, Du Z, Liang Y, Hu Z, Zhang K, Huang F, Cao Y. Giant, 2021, 6: 100053

    Article  Google Scholar 

  11. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  12. Li S, Li CZ, Shi M, Chen H. ACS Energy Lett, 2020, 5: 1554–1567

    Article  CAS  Google Scholar 

  13. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  14. Ma R, Tao Y, Chen Y, Liu T, Luo Z, Guo Y, Xiao Y, Fang J, Zhang G, Li X, Guo X, Yi Y, Zhang M, Lu X, Li Y, Yan H. Sci China Chem, 2021, doi: https://doi.org/10.1007/s11426-11020-19912-11420

  15. Ma R, Liu T, Luo Z, Gao K, Chen K, Zhang G, Gao W, Xiao Y, Lau TK, Fan Q, Chen Y, Ma LK, Sun H, Cai G, Yang T, Lu X, Wang E, Yang C, Jen AKY, Yan H. ACS Energy Lett, 2020, 5: 2711–2720

    Article  CAS  Google Scholar 

  16. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  CAS  Google Scholar 

  17. J0rgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv Mater, 2012, 24: 580–612

    Article  PubMed  Google Scholar 

  18. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  19. Luo Z, Ma R, Liu T, Yu J, Xiao Y, Sun R, Xie G, Yuan J, Chen Y, Chen K, Chai G, Sun H, Min J, Zhang J, Zou Y, Yang C, Lu X, Gao F, Yan H. Joule, 2020, 4: 1236–1247

    Article  CAS  Google Scholar 

  20. Liu W, Zhang J, Xu S, Zhu X. Sci Bull, 2019, 64: 1144–1147

    Article  Google Scholar 

  21. Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352–1366

    Article  CAS  Google Scholar 

  22. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  23. Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33: 2007231

    Article  CAS  Google Scholar 

  24. Lin Y, Nugraha MI, Firdaus Y, Scaccabarozzi AD, Aniás F, Emwas AH, Yengel E, Zheng X, Liu J, Wahyudi W, Yarali E, Faber H, Bakr OM, Tsetseris L, Heeney M, Anthopoulos TD. ACS Energy Lett, 2020, 5: 3663–3671

    Article  CAS  Google Scholar 

  25. Zhang M, Zhu L, Zhou G, Hao T, Qiu C, Zhao Z, Hu Q, Larson BW, Zhu H, Ma Z, Tang Z, Feng W, Zhang Y, Russell TP, Liu F. Nat Commun, 2021, 12: 309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192–209

    Article  CAS  Google Scholar 

  27. Zhou Y, Kurosawa T, Ma W, Guo Y, Fang L, Vandewal K, Diao Y, Wang C, Yan Q, Reinspach J, Mei J, Appleton AL, Koleilat GI, Gao Y, Mannsfeld SCB, Salleo A, Ade H, Zhao D, Bao Z. Adv Mater, 2014, 26: 3767–3772

    Article  CAS  PubMed  Google Scholar 

  28. Mo D, Chen H, Zhou J, Tang N, Han L, Zhu Y, Chao P, Lai H, Xie Z, He F. J Mater Chem A, 2020, 8: 8903–8912

    Article  CAS  Google Scholar 

  29. Li Y, Zheng N, Yu L, Wen S, Gao C, Sun M, Yang R. Adv Mater, 2019, 31: 1807832

    Article  Google Scholar 

  30. Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361–369

    Article  CAS  Google Scholar 

  31. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    Article  CAS  Google Scholar 

  32. Chai G, Chang Y, Zhang J, Xu X, Yu L, Zou X, Li X, Chen Y, Luo S, Liu B, Bai F, Luo Z, Yu H, Liang J, Liu T, Wong KS, Zhou H, Peng Q, Yan H. Energy Environ Sci, 2021, doi: https://doi.org/10.1039/D1030EE03506H

  33. Luo Z, Liu T, Yan H, Zou Y, Yang C. Adv Funct Mater, 2020, 30: 2004477

    Article  CAS  Google Scholar 

  34. Chen Y, Bai F, Peng Z, Zhu L, Zhang J, Zou X, Qin Y, Kim HK, Yuan J, Ma L-, Zhang J, Yu H, Chow PCY, Huang F, Zou Y, Ade H, Liu F, Yan H. Adv Energy Mater, 2021, 11: 2003141

    Article  CAS  Google Scholar 

  35. Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, Neher D, Vandewal K, Shoaee S, Wang T, Ade H, Heumüller T, Brabec C, Meredith P. Adv Energy Mater, 2021, 11: 2003570

    Article  CAS  Google Scholar 

  36. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, 31: 1903441

    Article  Google Scholar 

  37. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  PubMed  Google Scholar 

  38. Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004–2013

    Article  CAS  PubMed  Google Scholar 

  39. Al-Ashouri A, Köhnen E, Li B, Magomedov A, Hempel H, Caprioglio P, Márquez JA, Morales Vilches AB, Kasparavicius E, Smith JA, Phung N, Menzel D, Grischek M, Kegelmann L, Skroblin D, Gollwitzer C, Malinauskas T, Jost M, Matic G, Rech B, Schlatmann R, Topic M, Korte L, Abate A, Stannowski B, Neher D, Stolterfoht M, Unold T, Getautis V, Albrecht S. Science, 2020, 370: 1300–1309

    Article  CAS  PubMed  Google Scholar 

  40. Lin Y, Firdaus Y, Isikgor FH, Nugraha MI, Yengel E, Harrison GT, Hallani R, El-Labban A, Faber H, Ma C, Zheng X, Subbiah A, Howells CT, Bakr OM, McCulloch I, Wolf SD, Tsetseris L, Anthopoulos TD. ACS Energy Lett, 2020, 5: 2935–2944

    Article  CAS  Google Scholar 

  41. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577

    Article  CAS  PubMed  Google Scholar 

  42. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509

    Article  Google Scholar 

  43. Malliaras GG, Salem JR, Brock PJ, Scott C. Phys Rev B, 1998, 58: R13411

    Article  CAS  Google Scholar 

  44. Müller-Buschbaum P. Adv Mater, 2014, 26: 7692–7709

    Article  PubMed  Google Scholar 

  45. Schubert M, Collins BA, Mangold H, Howard IA, Schindler W, Vandewal K, Roland S, Behrends J, Kraffert F, Steyrleuthner R, Chen Z, Fostiropoulos K, Bittl R, Salleo A, Facchetti A, Laquai F, Ade HW, Neher D. Adv Funct Mater, 2014, 24: 4068–4081

    Article  CAS  Google Scholar 

  46. Kim HG, Kang B, Ko H, Lee J, Shin J, Cho K. ChemMater, 2015, 27: 829–838

    CAS  Google Scholar 

  47. Shi M, Wang T, Wu Y, Sun R, Wang W, Guo J, Wu Q, Yang W, Min J. Adv Energy Mater, 2021, 11: 2002709

    Article  CAS  Google Scholar 

  48. Gasparini N, Paleti SHK, Bertrandie J, Cai G, Zhang G, Wadsworth A, Lu X, Yip HL, McCulloch I, Baran D. ACS Energy Lett, 2020, 5: 1371–1379

    Article  CAS  Google Scholar 

  49. Zhang Y, Liu D, Lau T, Zhan L, Shen D, Fong PWK, Yan C, Zhang S, Lu X, Lee C, Hou J, Chen H, Li G. Adv Funct Mater, 2020, 30: 1910466

    Article  CAS  Google Scholar 

  50. Duan L, Zhang Y, He M, Deng R, Yi H, Wei Q, Zou Y, Uddin A. ACS Appl Mater Interfaces, 2020, 12: 27433–27442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (2019YFA0705900) funded by MOST, and the Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Huang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

11426_2021_1013_MOESM1_ESM.pdf

High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Feng, L., Jia, T. et al. High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors. Sci. China Chem. 64, 1192–1199 (2021). https://doi.org/10.1007/s11426-021-1013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1013-0

Keywords

Navigation