Skip to main content
Log in

Divergent asymmetric synthesis of azaarene-functionalized cyclic alcohols through stereocontrolled Beckwith-Enholm cyclizations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The first enantioselective Beckwith-Enholm cyclization reaction is reported herein. Under cooperative photoredox and chiral hydrogen-bonding catalysis mediated by visible light, cyclization of carbonyls with azaarene-based olefins as a new reaction system offers a general and divergent synthetic pathway to furnish a variety of highly valuable enantioenriched azaarene-functionalized carbocyclic and heterocyclic alcohols, which bear adjacent 1,2- or nonadjacent 1,3-stereocentres on distinct cyclic frameworks, in high yields and enantio- and diastereoselectivities. The good compatibility of various azaarenes and carbonyls as well as the diversity of cyclic structures of the products underscores the generality of the catalysis platform. In addition to the ability to precisely introduce deuterium into molecules in an enantioselective manner, the considerable synthetic value of this method includes the excellent antioxidant stress potential of the products. In particular, molecule 29 was determined to be a promising lead compound for antioxidant stress drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Streuff J. Synthesis, 2013, 45: 281–307

    Article  CAS  Google Scholar 

  2. Ardisson J, Férézou JP, Julia M, Pancrazi A. Tetrahedron Lett, 1987, 28: 2001–2003

    Article  CAS  Google Scholar 

  3. Corey EJ, Pyne SG. Tetrahedron Lett, 1983, 24: 2821–2824

    Article  CAS  Google Scholar 

  4. Yeh CH, Korivi RP, Cheng CH. Adv Synth Catal, 2013, 355: 1338–1344

    Article  CAS  Google Scholar 

  5. Beckwith ALJ, Roberts DH. J Am Chem Soc, 1986, 108: 5893–5901

    Article  CAS  PubMed  Google Scholar 

  6. Sugawara T, Otter BA, Ueda T. Tetrahedron Lett, 1988, 29: 75–78

    Article  CAS  Google Scholar 

  7. Porter NA, Chang VHT, Magnin DR, Wright BT. J Am Chem Soc, 1988, 110: 3554–3560

    Article  CAS  Google Scholar 

  8. Enholm EJ, Prasad G. Tetrahedron Lett, 1989, 30: 4939–4942

    Article  Google Scholar 

  9. Enholm EJ, Burroff JA. Tetrahedron Lett, 1992, 33: 1835–1838

    Article  CAS  Google Scholar 

  10. Hays DS, Fu GC. J Org Chem, 1996, 61: 4–5

    Article  CAS  Google Scholar 

  11. Mikami K, Yamaoka M. Tetrahedron Lett, 1998, 39: 4501–4504

    Article  CAS  Google Scholar 

  12. Tripp JC, Schiesser CH, Curran DP. J Am Chem Soc, 2005, 127: 5518–5527

    Article  CAS  PubMed  Google Scholar 

  13. Hays DS, Fu GC. J Org Chem, 1998, 63: 6375–6381

    Article  CAS  PubMed  Google Scholar 

  14. Otsubo K, Inanaga J, Yamaguchi M. Tetrahedron Lett, 1986, 27: 5763–5764

    Article  CAS  Google Scholar 

  15. Molander GA, Kenny C. J Am Chem Soc, 1989, 111: 8236–8246

    Article  CAS  Google Scholar 

  16. Corey EJ, Zheng GZ. Tetrahedron Lett, 1997, 38: 2045–2048

    Article  CAS  Google Scholar 

  17. Estévez RE, Oller-López JL, Robles R, Melgarejo CR, Gansäuer A, Cuerva JM, Oltra JE. Org Lett, 2006, 8: 5433–5436

    Article  PubMed  CAS  Google Scholar 

  18. Shono T, Ohmizu H, Kawakami S, Sugiyama H. Tetrahedron Lett, 1980, 21: 5029–5032

    Article  CAS  Google Scholar 

  19. Cossy J, Belotti D, Cuong NK, Chassagnard C. Tetrahedron, 1993, 49: 7691–7700

    Article  CAS  Google Scholar 

  20. Cossy J, Belotti D. Tetrahedron, 2006, 62: 6459–6470

    Article  CAS  Google Scholar 

  21. Tarantino KT, Liu P, Knowles RR. J Am Chem Soc, 2013, 135: 10022–10025

    Article  CAS  PubMed  Google Scholar 

  22. Fava E, Nakajima M, Nguyen ALP, Rueping M. J Org Chem, 2016, 81: 6959–6964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang ZS, Chen YB, Wang K, Xu Z, Ye LW. Green Chem, 2020, 22: 4483–4488

    Article  CAS  Google Scholar 

  24. Prier CK, Rankic DA, MacMillan DWC. ChemRev, 2013, 113: 5322–5363

    CAS  Google Scholar 

  25. Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

  28. Zhang HH, Chen H, Zhu C, Yu S. Sci China Chem, 2020, 63: 637–647

    Article  CAS  Google Scholar 

  29. Mangelinckx S, Giubellina N, De Kimpe N. Chem Rev, 2004, 104: 2353–2400

    Article  CAS  PubMed  Google Scholar 

  30. Best D, Lam HW. J Org Chem, 2014, 79: 831–845

    Article  CAS  PubMed  Google Scholar 

  31. Evano G, Theunissen C. Angew Chem Int Ed, 2019, 58: 7558–7598

    Article  CAS  Google Scholar 

  32. Proctor RSJ, Phipps RJ. Angew Chem Int Ed, 2019, 58: 13666–13699

    Article  CAS  Google Scholar 

  33. Zhao Y, Xia W. Org Biomol Chem, 2019, 17: 4951–4963

    Article  CAS  PubMed  Google Scholar 

  34. Yin Y, Zhao X, Jiang Z. ChemCatChem, 2020, 12: 4471–4489

    Article  CAS  Google Scholar 

  35. Miyazawa K, Yasu Y, Koike T, Akita M. Chem Commun, 2013, 49: 7249–7251

    Article  CAS  Google Scholar 

  36. Lee KN, Lei Z, Ngai MY. J Am Chem Soc, 2017, 139: 5003–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lima F, Sharma UK, Grunenberg L, Saha D, Johannsen S, Sedelmeier J, Van der Eycken EV, Ley SV. Angew Chem Int Ed, 2017, 56: 15136–15140

    Article  CAS  Google Scholar 

  38. Trowbridge A, Reich D, Gaunt MJ. Nature, 2018, 561: 522–527

    Article  CAS  PubMed  Google Scholar 

  39. Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J Am Chem Soc, 2018, 140: 6083–6087

    Article  CAS  PubMed  Google Scholar 

  40. Cao K, Tan SM, Lee R, Yang S, Jia H, Zhao X, Qiao B, Jiang Z. JAm Chem Soc, 2019, 141: 5437–5443

    Article  CAS  Google Scholar 

  41. Yin Y, Li Y, Gonçalves TP, Zhan Q, Wang G, Zhao X, Qiao B, Huang KW, Jiang Z. J Am Chem Soc, 2020, 142: 19451–19456

    Article  CAS  PubMed  Google Scholar 

  42. Kong M, Tan Y, Zhao X, Qiao B, Tan CH, Cao S, Jiang Z. JAm Chem Soc, 2021, 143: 4024–4031

    Article  CAS  Google Scholar 

  43. Wang C, Lu Z. Org Chem Front, 2015, 2: 179–190

    Article  CAS  Google Scholar 

  44. Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew Chem Int Ed, 2015, 54: 3872–3890

    Article  CAS  Google Scholar 

  45. Jiang C, Chen W, Zheng WH, Lu H. Org Biomol Chem, 2019, 17: 8673–8689

    Article  CAS  PubMed  Google Scholar 

  46. Yin Y, Zhao X, Qiao B, Jiang Z. Org Chem Front, 2020, 7: 1283–1296

    Article  CAS  Google Scholar 

  47. Lv X, Xu H, Yin Y, Zhao X, Jiang Z. Chin J Chem, 2020, 38: 1480–1488

    Article  CAS  Google Scholar 

  48. Hepburn HB, Melchiorre P. Chem Commun, 2016, 52: 3520–3523

    Article  CAS  Google Scholar 

  49. Proctor RSJ, Davis HJ, Phipps RJ. Science, 2018, 360: 419–422

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Liu Y, Chai G, Qiao B, Zhao X, Jiang Z. Org Lett, 2018, 20: 6298–6301

    Article  CAS  PubMed  Google Scholar 

  51. Qiao B, Li C, Zhao X, Yin Y, Jiang Z. Chem Commun, 2019, 55: 7534–7537

    Article  Google Scholar 

  52. Fu MC, Shang R, Zhao B, Wang B, Fu Y. Science, 2019, 363: 1429–1434

    Article  CAS  PubMed  Google Scholar 

  53. Zheng D, Studer A. Angew Chem Int Ed, 2019, 58: 15803–15807

    Article  CAS  Google Scholar 

  54. Bauer A, Westkämper F, Grimme S, Bach T. Nature, 2005, 436: 1139–1140

    Article  CAS  PubMed  Google Scholar 

  55. Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J Am Chem Soc, 2013, 135: 17735–17738

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Li J, Ye X, Zhao X, Jiang Z. Chem Commun, 2016, 52: 13955–13958

    Article  CAS  Google Scholar 

  57. Lin L, Bai X, Ye X, Zhao X, Tan CH, Jiang Z. Angew Chem Int Ed, 2017, 56: 13842–13846

    Article  CAS  Google Scholar 

  58. Li J, Kong M, Qiao B, Lee R, Zhao X, Jiang Z. Nat Commun, 2018, 9: 2445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Roos CB, Demaerel J, Graff DE, Knowles RR. J Am Chem Soc, 2020, 142: 5974–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bigge CF, Casimiro-Garcia A, Lee C, Risley HL, Schaum RP. Preparation of imidazo[4,5-b]pyridine compounds having both angiotensin II receptor antagonism and PPARγ activating activities. PCT Int Appl, 2008, WO 2008084303, 2008-07-17

  61. Ito A, Sudo K, Imai E, Shimokawara T, Saishoji T, Mori M, Kimura R. Preparation of (heterocyclic methyl)azolylmethylcyclopentanol derivatives as agrochemicals and protective agents for industrial materials. PCT Int Appl, 2009, WO 2009088070, 2009-07-16

  62. Rorufu UH, Geraruto AU. Preparation of (pyridylmethyl)tetralol derivatives as aromatase inhibitors. Jpn Kokai Tokkyo Koho, 1994, JP 06166674, 1994-06-14

  63. Kawano E, Nagai M, Inubushi A, Shimada K, Tobari H. Nitrogen monoxide synthetase inhibitor comprising 2-aminopyridines as active ingredient. PCT Int Appl, 1997, WO 9709982, 1997-03-20

  64. Eggler JF, Marfat A, Melvin LS Jr. Preparation of 6-aryloxy-3-arylmethylchromanones and -ols and analogs as lipoxygenase and LTD4 inhibitors. US Patent, 1991, US 5059609 A 1991-10-22

  65. Eguchi Y, Chiba K, Goto M, Obaishi H, Kuboi Y. Preparation of cyclooctanone derivatives and cyclodecanone derivatives as cytokine production inhibitors. PCT Int Appl, 2002, WO 2002081420, 2002-10-17

  66. Charton J, Girault-Mizzi S, Debreu-Fontaine MA, Foufelle F, Hainault I, Bizot-Espiard JG, Caignard DH, Sergheraert C. Bioorg Med Chem, 2006, 14: 4490–4518

    Article  CAS  PubMed  Google Scholar 

  67. Kong X, Vukomanovic D, Nakatsu K, Szarek WA. ChemMedChem, 2015, 10: 1435–1441

    Article  CAS  PubMed  Google Scholar 

  68. Katagiri Y, Takata H. Preparation of pyridine compound as harmful-arthropod control agent. PCT Int Appl, 2019, WO 2019083007, 2019-05-02

  69. Kawada S, Matsumoto K, Arashima M, Takahashi T. Preparation of pyridine derivatives as thyroid hormone β receptor agonists. Jpn Kokai Tokkyo Hoho, 2012, JP 2012106996, 2012-06-07

  70. Kawada S, Matsumoto K, Niijima M, Takahashi T. Preparation of 2-benzylpyridine and 2-phenoxypyridine derivatives as novel thyroid hormone β receptor agonists (thyromimetics). PCT Int Appl, 2010, WO 2010122980, 2010-10-28

  71. Trost BM, Thaisrivongs DA, Hartwig J. J Am Chem Soc, 2011, 133: 12439–12441

    Article  CAS  PubMed  Google Scholar 

  72. Gentry EC, Knowles RR. Acc Chem Res, 2016, 49: 1546–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li S, Zhu B, Lee R, Qiao B, Jiang Z. Org Chem Front, 2018, 5: 380–385

    Article  CAS  Google Scholar 

  74. Dobmeier M, Herrmann JM, Lenoir D, König B. Beilstein J Org Chem, 2012, 8: 330–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Elmore CS. Annu Rep Med Chem, 2009, 44: 515–534

    CAS  Google Scholar 

  76. Elmore CS, Bragg RA. Bioorg Med Chem Lett, 2015, 25: 167–171

    Article  CAS  PubMed  Google Scholar 

  77. Meanwell NA. J Med Chem, 2011, 54: 2529–2591

    Article  CAS  PubMed  Google Scholar 

  78. Alonso F, Beletskaya IP, Yus M. Chem Rev, 2002, 102: 4009–4092

    Article  CAS  PubMed  Google Scholar 

  79. Ranjan P, Pillitteri S, Van der Eycken EV, Sharma UK. Green Chem, 2020, 22: 7725–7736

    Article  CAS  Google Scholar 

  80. The ee value of 44 was maintained after prolonging the reaction beyond completion. Moreover, under the established reaction conditions and in the presence of 100 equiv. of D2O, no deuteration product was observed by directly using 44 as the starting substrate. All results support the stability of the α-pyridyl stereocentre

  81. Stern M, McNew JA. Mol Psychiatr, 2021, 26: 736–746

    Article  CAS  Google Scholar 

  82. Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, Billings Iv FT, Verdin E, Auwerx J, Harrison DG, Dikalov SI. Circ Res, 2020, 126: 439–452

    Article  CAS  PubMed  Google Scholar 

  83. Marchetto A, Ohmura S, Orth MF, Knott MML, Colombo MV, Arrigoni C, Bardinet V, Saucier D, Wehweck FS, Li J, Stein S, Gerke JS, Baldauf MC, Musa J, Dallmayer M, Romero-Pérez L, Hölting TLB, Amatruda JF, Cossarizza A, Henssen AG, Kirchner T, Moretti M, Cidre-Aranaz F, Sannino G, Grünewald TGP. Nat Commun, 2020, 11: 2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. The major diastereomer of these chiral products was used for evaluation

  85. Motohashi H, Yamamoto M. Trends Mol Med, 2004, 10: 549–557

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21925103, 21901062), Key Technologies R&D Program of Henan (202102310005), Henan Normal University and Henan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Zhao or Zhiyong Jiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2021_1019_MOESM1_ESM.pdf

Divergent asymmetric synthesis of azaarene-functionalized cyclic alcohols through stereocontrolled Beckwith-Enholm cyclizations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Chen, X., Fang, H. et al. Divergent asymmetric synthesis of azaarene-functionalized cyclic alcohols through stereocontrolled Beckwith-Enholm cyclizations. Sci. China Chem. 64, 1522–1529 (2021). https://doi.org/10.1007/s11426-021-1019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1019-2

Keywords

Navigation