Skip to main content
Log in

Ecosystem carbon stocks and their changes in China’s grasslands

  • Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The knowledge of carbon (C) stock and its dynamics is crucial for understanding the role of grassland ecosystems in China’s terrestrial C cycle. To date, a comprehensive assessment on C balance in China’s grasslands is still lacking. By reviewing published literature, this study aims to evaluate ecosystem C stocks (both vegetation biomass and soil organic C) and their changes in China’s grasslands. Our results are summarized as follows: (1) biomass C density (C stock per area) of China’s grasslands differed greatly among previous studies, ranging from 215.8 to 348.1 g C m−2 with an average of 300.2 g C m−2. Likewise, soil C density also varied greatly between 8.5 and 15.1 kg C m−2. In total, ecosystem C stock in China’s grasslands was estimated at 29.1 Pg C. (2) Both the magnitude and direction of ecosystem C changes in China’s grasslands differed greatly among previous studies. According to recent reports, neither biomass nor soil C stock in China’s grasslands showed a significant change during the past 20 years, indicating that grassland ecosystems are C neutral. (3) Spatial patterns and temporal dynamics of grassland biomass were closely correlated with precipitation, while changes in soil C stocks exhibited close associations with soil moisture and soil texture. Human activities, such as livestock grazing and fencing could also affect ecosystem C dynamics in China’s grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scurlock J M, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biol, 2002, 8: 736–753, 10.1046/j.1365-2486.2002.00512.x

    Article  Google Scholar 

  2. Chen Z Z, Wang S P. Typical Steppe Ecosystems of China. Beijing: Science Press, 2000 (in Chinese)

    Google Scholar 

  3. Department of Animal Husbandry and Veterinary. Rangeland Resources of China. Beijing: China Science and Technology Press, 1996 (in Chinese)

    Google Scholar 

  4. Kang L, Han X G, Zhang Z B, et al. Grassland ecosystems in China: review of current knowledge and research advancement. Phil Trans Roy Soc B-Biol Sci (Series B), 2007, 362: 997–1008, 10.1098/rstb.2007.2029

    Article  Google Scholar 

  5. Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D-Earth Sci, 2007, 50: 1341–1350, 10.1007/s11430-007-0049-1, 1:CAS:528:DC%2BD2sXht1yiurrO

    Article  CAS  Google Scholar 

  6. Piao S L, Fang J Y, Ciais P, et al. The Carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009–1013, 10.1038/nature07944, 19396142, 1:CAS:528:DC%2BD1MXkvFKhtLc%3D

    Article  PubMed  CAS  Google Scholar 

  7. Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biol, 2010, doi: 10.1111/j.1365-2486.2009.02123.x

  8. Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biol, 2008, 14, 1592–1599, 10.1111/j.1365-2486.2008.01591.x

    Article  Google Scholar 

  9. Wang Q J, Wang W Y, Deng Z F. The dynamics of biomass and the allocation of energy in alpine Kobresia meadow communities, Haibei region of Qinghai province (in Chinese). Acta Phytaecol Sin, 1998, 22: 222–230

    Google Scholar 

  10. Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181–184, 10.1038/nature02850, 15356630, 1:CAS:528:DC%2BD2cXntlGks7w%3D

    Article  PubMed  CAS  Google Scholar 

  11. Ma W H, Liu Z L, Wang Z H, et al. Climate change alters interannual variation of grassland aboveground productivity: evidence from a 22-year measurement series in the Inner Mongolian grassland. J Plant Res, 2010, doi: 10.1007/s10265-009-0302-0

  12. Zhou H K, Zhou L, Zhao X Q, et al. Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Chin Sci Bull, 2006, 51: 320–327, 10.1007/s11434-006-0320-4

    Article  Google Scholar 

  13. Fan J W, Zhong H P, Harris W, et al. Carbon storage in the grasslands of China based on field measurements of above- and belowground biomass. Clim Change, 2008, 86: 375–396, 10.1007/s10584-007-9316-6, 1:CAS:528:DC%2BD2sXhsVKgsrbF

    Article  CAS  Google Scholar 

  14. Yang Y H, Fang J Y, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biol, 2009, 15: 2723–2729, 10.1111/j.1365-2486.2009.01924.x

    Article  Google Scholar 

  15. Wang S P, Zhou G S, Lv Y C, et al. Distribution of soil carbon, nitrogen and phosphorusalong northeast China transect (NECT) and their relationships with climatic factors (in Chinese). Acta Phytoecol Sin, 2002, 26: 513–517

    Google Scholar 

  16. Tian Y Q, Ouyang H, Song M H, et al. Distribution characteristics and influencing factors of soil organic carbon in alpine ecosystems on Tibetan Plateau transect (in Chinese). J Zhejiang Univ (Agric & Life Sci), 2007, 33: 443–449, 1:CAS:528:DC%2BD1cXos1Ors7g%3D

    CAS  Google Scholar 

  17. Ni J. Carbon storage in grasslands of China. J Arid Environ, 2002, 50: 205–218, 10.1006/jare.2001.0902

    Article  Google Scholar 

  18. Piao S L, Fang J Y, Zhou L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem Cy, 2007, 21: GB2002, doi:10.1029/2005GB002634, 10.1029/2005GB002634, 1:CAS:528:DC%2BD2sXovFagtbw%3D

    Google Scholar 

  19. Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biol, 2007, 13: 1989–2007, 10.1111/j.1365-2486.2007.01409.x

    Article  Google Scholar 

  20. Anwar M, Yang Y H, Guo Z D, et al. Grassland aboveground biomass in Xinjiang (in Chinese). Acta Sci Nat Univ Pekinensis, 2006, 42: 521–526

    Google Scholar 

  21. Fang J Y, Liu G H, Xu S L. Carbon reservoir of terrestrial ecosystem in China. In: Wang G C, Wen Y P. eds. Monitoring and Relevant Process of Greenhous Gas Concentration and Emission. Beijing: China Environmental Science Publishing House, 1996 (in Chinese)

    Google Scholar 

  22. Ma W H, Han M, Lin X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia (in Chinese). J Arid Land Res Envir, 2006, 20: 192–195

    Google Scholar 

  23. Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China (in Chinese). Acta Phytoecol Sin, 2004, 28: 491–498

    Google Scholar 

  24. Wang J L, Chang T J, Li P, et al. The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet (in Chinese). Acta Ecol Sin, 2009, 29: 931–938, 1:CAS:528:DC%2BD1MXktFKjs7w%3D

    CAS  Google Scholar 

  25. Ma W H, Fang J Y, Mohammat A, et al. Biomass carbon and its changes in northern China’s grasslands, 1982–2006. Sci China Life Sci, 2010, 53: 841–850, 10.1007/s11427-010-4020-6, 20697873

    Article  PubMed  Google Scholar 

  26. Ni J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Clim Change, 2001, 49: 339–358, 10.1023/A:1010728609701, 1:CAS:528:DC%2BD3MXktVamtbo%3D

    Article  CAS  Google Scholar 

  27. Ni J. Forage yield-based carbon storage in grasslands of China. Clim Change, 2004, 67: 237–246, 10.1007/s10584-004-0070-8, 1:CAS:528:DC%2BD2MXitlKhsrY%3D

    Article  CAS  Google Scholar 

  28. Yang Y H, Fang J Y, Pan Y D, et al. Aboveground biomass in Tibetan grasslands. J Arid Environ, 2009, 73: 91–95, 10.1016/j.jaridenv.2008.09.027

    Article  Google Scholar 

  29. Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China. Sci China Ser D-Earth Sci, 2004, 47: 49–57, 10.1360/02yd0029, 1:CAS:528:DC%2BD2cXhsVOqsL4%3D

    Article  CAS  Google Scholar 

  30. Wang S Q, Zhou C H, Luo C W. Studying carbon storage spatial distribution of terrestrial natural vegetation in China (in Chinese). Prog Geogr, 1999, 18: 238–244, 1:CAS:528:DC%2BD3cXhsV2hsrc%3D

    CAS  Google Scholar 

  31. Olson R J, Watts J A, Allison L J. Carbon in live vegetation of major world ecosystem, ed. O.R.N. Laboratory. Oak Ridge. 1983

  32. Yang Y H, Fang J Y, Ma W H, et al. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecol Biogeogr, 2010, 19: 268–277, 10.1111/j.1466-8238.2009.00502.x

    Article  Google Scholar 

  33. Wang L, Niu K, Yang Y H, et al. Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual-level observations. Science China Life Sci, 2010, 53: 851–857, 10.1007/s11427-010-4027-z

    Article  Google Scholar 

  34. Yang Y H, Fang J Y, Ji C J, et al. Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci, 2009, 20: 177–184, 10.1111/j.1654-1103.2009.05566.x

    Article  Google Scholar 

  35. Seying B T, Jia F, The position monitoring of temporal and spatial dynamics of grassland biomass in northern China (in Chinese). Grassland China, 2003, 25: 9–14

    Google Scholar 

  36. Fang J Y, Piao S L, He J S, et al. Increasing terrestrial vegetation activity in China, 1982–1999. Sci China Ser C-Life Sci, 2004, 47: 229–240

    Google Scholar 

  37. Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biol, 2006, 12: 672–685, 10.1111/j.1365-2486.2006.01123.x

    Article  Google Scholar 

  38. Fang J Y, Liu G H, Xu S L. Soil carbon pool in China and its global significance. J Environ Sci (China), 1996, 8: 249–254, 1:CAS:528:DyaK2sXjs1Wgug%3D%3D

    CAS  Google Scholar 

  39. Chen Q M, Wang S Q, Yu G R. Spatial characteristics of soil organic carbon and nitrogen in Inner Mongolia (in Chinese). Chin J Appl Ecol, 2003, 14: 699–704, 1:CAS:528:DC%2BD3sXmvFygsbY%3D

    CAS  Google Scholar 

  40. Wang G X, Cheng G D, Shen Y P. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication (in Chinese). J Glaciol Geocryol, 2002, 24: 693–700

    Google Scholar 

  41. Zhang Y Q, Tang Y H, Jiang J, et al. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Sci China Ser D-Earth Sci, 2007, 50: 113–120, 10.1007/s11430-007-2032-2, 1:CAS:528:DC%2BD2sXjvF2jsbs%3D

    Article  CAS  Google Scholar 

  42. Yang Y H, Ma W H, Mohammat A, et al. Storage, patterns and controls of soil nitrogen in China. Pedosphere, 2007, 17: 776–785, 10.1016/S1002-0160(07)60093-9, 1:CAS:528:DC%2BD2sXhsVyhtb7J

    Article  CAS  Google Scholar 

  43. Yang Y H, Mohammat A, Feng J M, et al. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 2007, 84: 131–141, 10.1007/s10533-007-9109-z

    Article  Google Scholar 

  44. Xie X L, Sun B, Zhou H Z, et al. Organic carbon density and storage in soils of China and spatial analysis (in Chinese). Acta Pedol Sin, 2004, 41: 35–43

    Google Scholar 

  45. Wu H B, Guo Z T, Peng C H. Distribution and storage of soil organic carbon in China. Global Biogeochem Cy, 2003. 17, GB1048, doi: 10.1029/2001GB001844

    Google Scholar 

  46. Wang S Q, Zhou C H, Li K R, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China (in Chinese). Acta Geogr Sin, 2000, 55: 533–544

    Google Scholar 

  47. Wynn J G, Bird M I, Vellen L, et al. Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochem Cy, 2006, 20, GB1007, doi: 10.1029/2005GB002576, 10.1029/2005GB002576, 1:CAS:528:DC%2BD28Xks1Sguro%3D

    Article  Google Scholar 

  48. Ma W H, Yang Y H, He J S, et al. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Sci China Ser C-Life Sci, 2008, 51: 263–270, 10.1007/s11427-008-0029-5

    Article  Google Scholar 

  49. Xiao X M. Sensitivity of Inner Mongolia grasslands to climate change. J Biogeogr, 1995, 22: 643–648, 10.2307/2845965

    Article  Google Scholar 

  50. Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland transect (in Chinese). J Plant Ecol, 2006, 30: 553–562

    Article  Google Scholar 

  51. Gu Z H, Chen J, Shi P J, et al. Correlation analysis of NDVI difference series and climate variables in Xinlingole steppe from 1983 to 1999 (in Chinese). Acta Phytoecol Sin, 2005, 29: 753–765

    Google Scholar 

  52. Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89: 2140–2153, 10.1890/07-0992.1, 18724724

    Article  PubMed  Google Scholar 

  53. Yang Y H, Fang J Y, Ma W H, et al. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys Res Lett, 2008, 35, L23710, doi: 10.1029/2008GL035408., 10.1029/2008GL035408

    Article  Google Scholar 

  54. Bai Y F. Influence of seasonal distribution of precipitation on primary productivity of Stipa krylovii community (in Chinese). Acta Phytoecol Sin, 1999, 23: 155–160

    Google Scholar 

  55. Bai Y F, Xu Z X. A model of above-ground biomass of Aneurolepidium chinense community in response to seasonal precipitation (in Chinese). Acta Pratacult Sin, 1997, 6: 1–6

    Google Scholar 

  56. Cai X C, Li Z Q, Chen Z Z, et al. The relationship between aboveground biomass and precipitation on Stipa grandis steppe in Inner Mongolia (in Chinese). Acta Ecol Sin, 2005, 25: 1657–1662

    Google Scholar 

  57. Han G D. Influence of precipitation and air temperature of primary productivity of Stipa klemenzii plant community, NeiMongol (in Chinese). Acta Sci Nat Univ NeiMongol, 2002, 33: 83–88

    Google Scholar 

  58. Wang Y H, Zhou G S. Responses of temporal dynamics of aboveground net primary productivity of Leymus chinensis community to precipitation fluctuation in Inner Mongolia (in Chinese). Acta Ecol Sin, 2004, 24: 1140–1145

    Google Scholar 

  59. Fang J Y, Piao S L, Tang Z Y, et al. Interannual variability in net primary production and precipitation. Science, 2001, 293: 1723a, 10.1126/science.293.5536.1723a

    Article  Google Scholar 

  60. Chen Y H, Li X B, Shi P J. Variation in NDVI driven by climate factors across China, 1983–1992. Acta Phytoecol Sin, 2001, 25: 716–720. (in Chinese)

    Google Scholar 

  61. Piao S, Mohammat A, Fang J Y, et al. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environ Change, 2006, 16: 340–348, 10.1016/j.gloenvcha.2006.02.002

    Article  Google Scholar 

  62. Li J H, Li Z Q. Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulis under different grazing intensities (in Chinese). Acta Phytoecol Sin, 2002, 26: 435–440

    Google Scholar 

  63. Wang G J, Wang S P, Hao Y B, et al. Effect of grazing on the plant functional group diversity and community biomass and their relationship along a precipitation gradient in Inner Mongolia Steppe (in Chinese). Acta Ecol Sin, 2005, 25: 1649–1656

    Google Scholar 

  64. Wang Y F, Wang S P. Influence of different stocking rates on belowground biomass in Inner Mongolia Steppe (in Chinese). Acta Agrest Sin, 1999, 7: 198–203

    Google Scholar 

  65. Fan J W, Zhong H P, Liang B, et al. Carbon stock in grassland ecosystem and its affecting factors (in Chinese). Grassland China, 2003, 25: 51–58

    Google Scholar 

  66. Han G D, Wei Z J. Influence of grazing intensity on underground biomass and carbohydrates) (in Chinese). J Forage Feed, 1990, 2: 16–19

    Google Scholar 

  67. Xilin T Y, Xu Z, Zheng Y. Influence of different stocking rates on underground biomass and net primary productivity on Stipa krylovii steppe in Inner Mongolia (in Chinese). Chin J Grassland, 2009, 31: 26–29

    Google Scholar 

  68. Dong Q M, Li Q Y, Ma Y T, et al. Effects of yak stocking rates on aboveground and belowground biomass Kobrecia parva alpine meadows (in Chinese). Sichuan Grassland, 2004, 2: 20–27

    Google Scholar 

  69. Dong Q M, Zhao X Q, Ma Y T, et al. Regression analysis between stocking rate for yak and aboveground and underground biomass of warm-season pasture in Kobrecia parva alpine meadow (in Chinese). Pratacult Sci, 2005, 22: 65–71

    Google Scholar 

  70. Wang S P, Wang Y F, Li Y H, et al. The influence of different stocking rates on herbage regrowth and aboveground net primary production (in Chinese). Acta Agrest Sin, 1998, 6: 275–281

    Google Scholar 

  71. Zuo W Q, Wang Y H, Wang F Y, et al. Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe (in Chinese). Acta Pratacult Sin, 2009, 18: 12–19

    Google Scholar 

  72. Sang Y Y, Ning H C, Qu H L. Surveying biomass of degraded grassland for forbidden grazing and enclosing after three years (in Chinese). Qinghai Pratacult, 2006, 15: 7–9

    Google Scholar 

  73. Wu G L, Du G Z, Liu Z H. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil, 2009, 319: 115–126, 10.1007/s11104-008-9854-3, 1:CAS:528:DC%2BD1MXlvFOrs7s%3D

    Article  CAS  Google Scholar 

  74. Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440: 165–173, 10.1038/nature04514, 16525463, 1:CAS:528:DC%2BD28XitFGitLo%3D

    Article  PubMed  CAS  Google Scholar 

  75. Fang J Y, Piao S, Field C B, et al. Increasing net primary production in China from 1982 to 1999. Front Ecol Environ, 2003, 1: 293–297, 10.1890/1540-9295(2003)001[0294:INPPIC]2.0.CO;2

    Article  Google Scholar 

  76. Feng X J, Simpson A J, Wislson K P, et al. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat Geosci, 2008, 1: 836–839, 10.1038/ngeo361, 1:CAS:528:DC%2BD1cXhsVChurvI

    Article  CAS  Google Scholar 

  77. Shi F, Li Y E, Gao Q J, et al. Effects of managements on soil organic carbon of grassland in China (in Chinese). Pratacult Science, 2009, 26: 9–15, 1:CAS:528:DC%2BD1MXhsVWiurfK

    CAS  Google Scholar 

  78. Zhou Z, Sun O, Huang J, et al. Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry, 2007, 82: 127–138, 10.1007/s10533-006-9058-y, 1:CAS:528:DC%2BD2sXlslWgsA%3D%3D

    Article  CAS  Google Scholar 

  79. Li L H. Effects of land-use change on soil carbon storage in grassland ecosystems (in Chinese). Acta Phytoecol Sin, 1998, 22: 300–302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingYun Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Yang, Y., Ma, W. et al. Ecosystem carbon stocks and their changes in China’s grasslands. Sci. China Life Sci. 53, 757–765 (2010). https://doi.org/10.1007/s11427-010-4029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4029-x

Keywords

Navigation