Skip to main content
Log in

The intestinal epithelial response to damage

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The constant renewal of the intestinal epithelium is fueled by intestinal stem cells (ISCs) lying at the base of crypts, and these ISCs continuously give rise to transit-amplifying progenitor cells during homeostasis. Upon injury and loss of ISCs, the epithelium has the ability to regenerate by the dedifferentiation of progenitor cells that then regain stemness and repopulate the pool of ISCs. Epithelial cells receive cues from immune cells, mesenchymal cells and the microbiome to maintain homeostasis. This review focuses on the response of the epithelium to damage and the interplay between the different intestinal compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, R., Shoshkes-Carmel, M., Gao, N., Shin, S., May, C.L., Golson, M. L., Zahm, A.M., Ray, M., Wiser, C.L., Wright, C.V.E., et al. (2016). Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell Mol Gastroenterol Hepatol 2, 175–188.

    Article  PubMed  Google Scholar 

  • Aparicio-Domingo, P., Romera-Hernandez, M., Karrich, J.J., Cornelissen, F., Papazian, N., Lindenbergh-Kortleve, D.J., Butler, J.A., Boon, L., Coles, M.C., Samsom, J.N., et al. (2015). Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med 212, 1783–1791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barker, N., Bartfeld, S., and Clevers, H. (2010). Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7, 656–670.

    Article  PubMed  CAS  Google Scholar 

  • Barker, N., van de Wetering, M., and Clevers, H. (2008). The intestinal stem cell. Genes Dev 22, 1856–1864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  • Barker, N., van Oudenaarden, A., and Clevers, H. (2012). Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11, 452–460.

    Article  PubMed  CAS  Google Scholar 

  • Beumer, J., and Clevers, H. (2016). Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 143, 3639–3649.

    Article  PubMed  CAS  Google Scholar 

  • Beyaz, S., Mana, M.D., Roper, J., Kedrin, D., Saadatpour, A., Hong, S.J., Bauer-Rowe, K.E., Xifaras, M.E., Akkad, A., Arias, E., et al. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buczacki, S.J.A., Zecchini, H.I., Nicholson, A.M., Russell, R., Vermeulen, L., Kemp, R., and Winton, D.J. (2013). Intestinal label-retaining cells are secretory precursors expressing lgr5. Nature 495, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Costantini, T.W., Bansal, V., Krzyzaniak, M., Putnam, J.G., Peterson, C.Y., Loomis, W.H., Wolf, P., Baird, A., Eliceiri, B.P., and Coimbra, R. (2010). Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol 299, G1308–G1318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford, P.A., and Gordon, J.I. (2005). From the cover: microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci USA 102, 13254–13259.

    Article  PubMed  CAS  Google Scholar 

  • Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G., and Basler K. (2018). GLI1-expressing mesenchymal cells form the essential Wntsecreting niche for colon stem cells. Nature 558, 449–453.

    Article  PubMed  CAS  Google Scholar 

  • Durand, A., Donahue, B., Peignon, G., Letourneur, F., Cagnard, N., Slomianny, C., Perret, C., Shroyer, N.F., and Romagnolo, B. (2012). Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci USA 109, 8965–8970.

    Article  PubMed  Google Scholar 

  • Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G.Y., Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanash, A.M., Dudakov, J.A., Hua, G., O’Connor, M.H., Young, L.F., Singer, N.V., West, M.L., Jenq, R.R., Holland, A.M., Kappel, L.W., et al. (2012). Interleukin-22 protects intestinal stem cells from immunemediated tissue damage and regulates sensitivity to graft versus host disease. Immunity 37, 339–350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He, X.C., Zhang, J., Tong, W.G., Tawfik, O., Ross, J., Scoville, D.H., Tian, Q., Zeng, X., He, X., Wiedemann, L.M., et al. (2004). BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 36, 1117–1121.

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Chirlaque, C., Aranda, C.J., Ocón, B., Capitán-Cañadas, F., Ortega-González, M., Carrero, J.J., Suárez, M.D., Zarzuelo, A., de Medina, F.S. and Martínez-Augustin, O. (2016). Germ-free and antibiotictreated mice are highly susceptible to epithelial injury in DSS colitis. J Crohn’s Colitis, 10, 1324–1335.

    Article  Google Scholar 

  • Horiguchi, H., Endo, M., Kawane, K., Kadomatsu, T., Terada, K., Morinaga, J., Araki, K., Miyata, K., and Oike, Y. (2017). ANGPTL2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis. EMBO J 36, 409–424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Igarashi, M., and Guarente, L. (2016). mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166, 436–450.

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi, F., Shimizu, H., Nakata, T., Fujii, S., Suzuki, K., Kawamoto, A., Anzai, S., Kuno, R., Nagata, S., Ito, G., et al. (2017). Contribution of ATOH1+ cells to the homeostasis, repair, and tumorigenesis of the colonic epithelium. Stem Cell Rep 10, 27–42.

    Article  CAS  Google Scholar 

  • Itzkovitz, S., Lyubimova, A., Blat, I.C., Maynard, M., van Es, J., Lees, J., Jacks, T., Clevers, H., and van Oudenaarden, A. (2012). Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat Cell Biol 14, 106–114.

    Article  CAS  Google Scholar 

  • Jadhav, U., Saxena, M., O’Neill, N.K., Saadatpour, A., Yuan, G.C., Herbert, Z., Murata, K., and Shivdasani, R.A. (2017). Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell 21, 65–77.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kabiri, Z., Greicius, G., Madan, B., Biechele, S., Zhong, Z., Zaribafzadeh, H., Edison, H., Aliyev, J., Wu, Y., Bunte, R., et al. (2014). Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141, 2206–2215.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.H., Escudero, S., and Shivdasani, R.A. (2012). Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci USA 109, 3932–3937.

    Article  PubMed  CAS  Google Scholar 

  • Lindemans, C.A., Calafiore, M., Mertelsmann, A.M., O’Connor, M.H., Dudakov, J.A., Jenq, R.R., Velardi, E., Young, L.F., Smith, O.M., Lawrence, G., et al. (2015). Interleukin-22 promotes intestinal-stem-cellmediated epithelial regeneration. Nature 528, 560–564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahapatro, M., Foersch, S., Hefele, M., He, G.W., Giner-Ventura, E., Mchedlidze, T., Kindermann, M., Vetrano, S., Danese, S., Günther, C., et al. (2016). Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep 15, 1743–1756.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, G.J., Bancroft, A., Grencis, R.K., and McKenzie, A.N.J. (1998). A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Curr Biol 8, 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe, C., Kljavin, N.M., Ybarra, R., and de Sauvage, F.J. (2014). Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14, 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, R.K., Carlone, D.L., Richmond, C.A., Farilla, L., Kranendonk, M.E.G., Henderson, D.E., Yaa Baffour-Awuah, N., Ambruzs, D. M., Fogli, L.K., Algra, S., et al. (2011). Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA 108, 179–184.

    Article  PubMed  Google Scholar 

  • Muñoz, J., Stange, D.E., Schepers, A.G., van de Wetering, M., Koo, B.K., Itzkovitz, S., Volckmann, R., Kung, K.S., Koster, J., Radulescu, S., et al. (2012). The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 31, 3079–3091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neurath, M.F. (2014). New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol 7, 6–19.

    Article  PubMed  CAS  Google Scholar 

  • Nusse, Y.M., Savage, A.K., Marangoni, P., Rosendahl-Huber, A.K.M., Landman, T.A., de Sauvage, F.J., Locksley, R.M., and Klein, O.D. (2018). Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pickert, G., Neufert, C., Leppkes, M., Zheng, Y., Wittkopf, N., Warntjen, M., Lehr, H.A., Hirth, S., Weigmann, B., Wirtz, S., et al. (2009). STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206, 1465–1472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinto, D., Gregorieff, A., Begthel, H., and Clevers, H. (2003). Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17, 1709–1713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potten, C.S., Kovacs, L., and Hamilton, E. (1974). Continuous labelling studies on mouse skin and intestine. Cell Prolif 7, 271–283.

    Article  CAS  Google Scholar 

  • Powell, A.E., Wang, Y., Li, Y., Poulin, E.J., Means, A.L., Washington, M. K., Higginbotham, J.N., Juchheim, A., Prasad, N., Levy, S.E., et al. (2012). The pan-ErbB negative regulator lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quiros, M., Nishio, H., Neumann, P.A., Siuda, D., Brazil, J.C., Azcutia, V., Hilgarth, R., O’Leary, M.N., Garcia-Hernandez, V., Leoni, G., et al. (2017). Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J Clin Investig 127, 3510–3520.

    Article  PubMed  Google Scholar 

  • Sangiorgi, E., and Capecchi, M.R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40, 915–920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato, T., and Clevers, H. (2013). Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., van Es, J.H., Snippert, H.J., Stange, D.E., Vries, R.G., van den Born, M., Barker, N., Shroyer, N.F., van de Wetering, M., and Clevers, H. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange, D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265.

    Article  PubMed  CAS  Google Scholar 

  • Shoshkes-Carmel, M., Wang, Y.J., Wangensteen, K.J., Tóth, B., Kondo, A., Massasa, E.E., Itzkovitz, S., and Kaestner, K.H. (2018). Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., et al. (2013). Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 13, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Stzepourginski, I., Nigro, G., Jacob, J.M., Dulauroy, S., Sansonetti, P.J., Eberl, G., and Peduto, L. (2017). CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci USA 114, E506–E513.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, N., Jain, R., LeBoeuf, M.R., Wang, Q., Lu, M.M., and Epstein, J.A. (2011). Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taniguchi, K., Wu, L.W., Grivennikov, S.I., de Jong, P.R., Lian, I., Yu, F.X., Wang, K., Ho, S.B., Boland, B.S., Chang, J.T., et al. (2015). A gp130- Src-YAP module links inflammation to epithelial regeneration. Nature 519, 57–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tetteh, P.W., Basak, O., Farin, H.F., Wiebrands, K., Kretzschmar, K., Begthel, H., van den Born, M., Korving, J., de Sauvage, F., van Es, J.H., et al. (2016). Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18, 203–213.

    Article  PubMed  CAS  Google Scholar 

  • Tian, H., Biehs, B., Chiu, C., Siebel, C.W., Wu, Y., Costa, M., de Sauvage, F.J., and Klein, O.D. (2015). Opposing activities of notch and wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep 11, 33–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian, H., Biehs, B., Warming, S., Leong, K.G., Rangell, L., Klein, O.D., and de Sauvage, F.J. (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuchiya, T., Fukuda, S., Hamada, H., Nakamura, A., Kohama, Y., Ishikawa, H., Tsujikawa, K., and Yamamoto, H. (2003). Role of gamma delta T cells in the inflammatory response of experimental colitis mice. J Immunol 171, 5507–5513.

    Article  PubMed  CAS  Google Scholar 

  • van der Flier, L.G., Haegebarth, A., Stange, D.E., van de Wetering, M., and Clevers, H. (2009). OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15–17.

    Article  PubMed  Google Scholar 

  • van der Flier, L.G., van Gijn, M.E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D.E., Begthel, H., van den Born, M., Guryev, V., Oving, I., et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912.

    Article  PubMed  CAS  Google Scholar 

  • van Es, J.H., Sato, T., van de Wetering, M., Lyubimova, A., Yee Nee, A.N., Gregorieff, A., Sasaki, N., Zeinstra, L., van den Born, M., Korving, J., et al. (2012). Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14, 1099–1104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Landeghem, L., Chevalier, J., Mahé, M.M., Wedel, T., Urvil, P., Derkinderen, P., Savidge, T., and Neunlist, M. (2011). Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am J Physiol Gastrointest Liver Physiol 300, G976–G987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Moltke, J., Ji, M., Liang, H.E., and Locksley, R.M. (2016). Tuft-cellderived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Tremaroli, V., and Bäckhed, F. (2015). Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab 26, 758–770.

    Article  PubMed  CAS  Google Scholar 

  • Yan, K.S., Gevaert, O., Zheng, G.X.Y., Anchang, B., Probert, C.S., Larkin, K.A., Davies, P.S., Cheng, Z.F., Kaddis, J.S., Han, A., et al. (2017). Intestinal enteroendocrine lineage cells possess homeostatic and injuryinducible stem cell activity. Cell Stem Cell 21, 78–90.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yilmaz, Ö.H., Katajisto, P., Lamming, D.W., Gültekin, Y., Bauer-Rowe, K. E., Sengupta, S., Birsoy, K., Dursun, A., Yilmaz, V.O., Selig, M., et al. (2012). MTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yui, S., Azzolin, L., Maimets, M., Pedersen, M.T., Fordham, R.P., Hansen, S.L., Larsen, H.L., Guiu, J., Alves, M.R.P., Rundsten, C.F., et al. (2018). YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49.e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou, W.Y., Blutt, S.E., Zeng, X.L., Chen, M.S., Lo, Y.H., Castillo-Azofeifa, D., Klein, O.D., Shroyer, N.F., Donowitz, M., and Estes, M.K. (2018). Epithelial WNT ligands are essential drivers of intestinal stem cell activation. Cell Rep 22, 1003–1015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank David Castillo Azofeifa, Tomas Wald, Kara McKinley, Rachel Zwick and Adriane Joo for reviewing and editing the manuscript and help with figure designs. This work was supported by the California Institute for Regenerative Medicine (RN3-06525), Fonds De La Recherche Scientifique-FNRS, Wallonie-Brussels International (WBI) and Fonds Erasme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ophir D. Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weichselbaum, L., Klein, O.D. The intestinal epithelial response to damage. Sci. China Life Sci. 61, 1205–1211 (2018). https://doi.org/10.1007/s11427-018-9331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9331-y

Keywords

Navigation