Skip to main content
Log in

Artificial intelligence in drug design

  • Review
  • From CAS & CAE Members
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology, the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials. Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence (AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening, activity scoring, quantitative structure-activity relationship (QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability, deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules, which will further promote the application of AI technologies in the field of drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abagyan, R., Totrov, M., and Kuznetsov, D. (1994). ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15, 488–506.

    Article  CAS  Google Scholar 

  • Ain, Q.U., Aleksandrova, A., Roessler, F.D., and Ballester, P.J. (2015). Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. WIREs Comput Mol Sci 5, 405–424.

    Article  CAS  Google Scholar 

  • Altae-Tran, H., Ramsundar, B., Pappu, A.S., and Pande, V. (2017). Low data drug discovery with one-shot learning. ACS Cent Sci 3, 283–293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andras, P. (2017). High-dimensional function approximation with neural networks for large volumes of data. IEEE Trans Neural Netw Learn Syst 99, 1–9.

    Google Scholar 

  • Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016). Deep learning for computational biology. Mol Syst Biol 12, 878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Artursson, P., and Karlsson, J. (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175, 880–885.

    Article  PubMed  CAS  Google Scholar 

  • Ash, S., Cline, M.A., Homer, R.W., Hurst, T., and Smith, G.B. (1997). ChemInform abstract: SYBYL line notation (SLN): a versatile language for chemical structure representation. ChemInform 28, no.

  • Ashburn, T.T., and Thor, K.B. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3, 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Bai, F., Morcos, F., Cheng, R.R., Jiang, H., and Onuchic, J.N. (2016). Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis. Proc Natl Acad Sci USA 113, E8051–E8058.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bender, A., And, H.Y.M., Glen, R.C., and Reiling, S. (2004). Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 44, 1708–1718.

    Article  PubMed  CAS  Google Scholar 

  • Cabreiro, F., Au, C., Leung, K.Y., Vergara-Irigaray, N., Cocheme, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D., and Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao, D.S., Xu, Q.S., Hu, Q.N., and Liang, Y.Z. (2013). ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29, 1092–1094.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B., Sheridan, R.P., Hornak, V., and Voigt, J.H. (2012). Comparison of random forest and pipeline pilot naïve bayes in prospective QSAR predictions. J Chem Inf Model 52, 792–803.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R., Li, L., and Weng, Z. (2003). ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80–87.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.C. (2015). Beware of docking! Trends Pharmacol Sci 36, 78–95.

    Article  PubMed  CAS  Google Scholar 

  • Coley, C.W., Barzilay, R., Green, W.H., Jaakkola, T.S., and Jensen, K.F. (2017). Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model 57, 1757–1772.

    Article  PubMed  CAS  Google Scholar 

  • Coley, C.W., Rogers, L., Green, W.H., and Jensen, K.F. (2018). SCScore: synthetic complexity learned from a reaction corpus. J Chem Inf Model 58, 252–261.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, R.A. (2010). The dynamics of drug-target interactions: drug-target residence time and its impact on efficacy and safety. Expert Opin Drug Discovery 5, 305–310.

    Article  CAS  Google Scholar 

  • Cortes, C., Kuznetsov, V., and Mohri, M. (2014). Ensemble methods for structured prediction. Proceedings of 31st International Conference on Machine Learning 2014, 1134–1142.

    Google Scholar 

  • Cukuroglu, E., Engin, H.B., Gursoy, A., and Keskin, O. (2014). Hot spots in protein–protein interfaces: Towards drug discovery. Prog Biophys Mol Biol 116, 165–173.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, G.E., Jaitly, N., and Salakhutdinov, R. (2014). Multi-task neural networks for QSAR predictions. Comput Sci, arXiv:1406.1231v1.

    Google Scholar 

  • Dang, N.L., Hughes, T.B., Krishnamurthy, V., and Swamidass, S.J. (2016). A simple model predicts UGT-mediated metabolism. Bioinformatics 32, 3183–3189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danishuddin, and Khan, A.U. (2016). Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov Today 21, 1291–1302.

    Article  PubMed  CAS  Google Scholar 

  • De Haes, W., Frooninckx, L., Van Assche, R., Smolders, A., Depuydt, G., Billen, J., Braeckman, B.P., Schoofs, L., and Temmerman, L. (2014). Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci USA 111, E2501–E2509.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • DiMasi, J.A., Grabowski, H.G., and Hansen, R.W. (2016). Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Economics 47, 20–33.

    Article  Google Scholar 

  • Dobchev, D., Pillai, G., and Karelson, M. (2014). In silico machine learning methods in drug development. CTMC 14, 1913–1922.

    Article  CAS  Google Scholar 

  • Du, T., Liao, L., Wu, C.H., and Sun, B. (2016). Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning. Methods 110, 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Duch, W., Swaminathan, K., and Meller, J. (2007). Artificial intelligence approaches for rational drug design and discovery. CPD 13, 1497–1508.

    Article  CAS  Google Scholar 

  • Dudek, A., Arodz, T., and Galvez, J. (2006). Computational methods in developing quantitative structure-activity relationships (QSAR): a review. CCHTS 9, 213–228.

    Article  CAS  Google Scholar 

  • Durant, J.L., Leland, B.A., Henry, D.R., and Nourse, J.G. (2003). Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 34, 1273–1280.

    Google Scholar 

  • Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Hirzel, T., and Adams, R.P. (2015). Convolutional networks on graphs for learning molecular fingerprints. In Proceedings of the 28th International Conference on Neural Information Processing Systems, pp. 2224–2232.

    Google Scholar 

  • Esposito, E.X., Hopfinger, A.J., and Madura, J.D. (2004). Methods for applying the quantitative structure-activity relationship paradigm. Methods Mol Biol 275, 131–214.

    Article  PubMed  CAS  Google Scholar 

  • Falchi, F., Caporuscio, F., and Recanatini, M. (2014). Structure-based design of small-molecule protein-protein interaction modulators: the story so far. Future Medicinal Chem 6, 343–357.

    Article  CAS  Google Scholar 

  • Free, S.M., and Wilson, J.W. (1964). A mathematical contribution to structure-activity studies. J Med Chem 7, 395–399.

    Article  PubMed  CAS  Google Scholar 

  • Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., and Perry, J.K. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47, 1739–1749.

    PubMed  CAS  Google Scholar 

  • Ghasemi, F., Mehridehnavi, A.R., Fassihi, A., and Pérez-Sánchez, H. (2017). Deep neural network in biological activity prediction using deep belief network. Appl Soft Comput 62, doi: 10.1016/j.asoc.2017.09.040.

  • Goh, G.B., Hodas, N.O., Siegel, C., and Vishnu, A. (2017). SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties. arXiv:1712.02034v2.

    Google Scholar 

  • Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., and Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4, 268–276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (Cambridge: The MIT Press)

    Google Scholar 

  • Guengerich, F.P. (2011). Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab Pharmacokinetics 26, 3–14.

    Article  CAS  Google Scholar 

  • Hansch, C., and Fujita, T. (1964). Additions and corrections -ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86, 5710.

    Google Scholar 

  • Hartenfeller, M., and Schneider, G. (2011). De novo drug design. Methods Mol Biol 672, 299–323.

    Article  PubMed  CAS  Google Scholar 

  • Hassan Baig, M., Ahmad, K., Roy, S., Mohammad Ashraf, J., Adil, M., Haris Siddiqui, M., Khan, S., Amjad Kamal, M., Provazník, I., and Choi, I. (2015). Computer aided drug design: success and limitations. CPD 22, 572–581.

    Article  CAS  Google Scholar 

  • Heller, S.R., McNaught, A., Pletnev, I., Stein, S., and Tchekhovskoi, D. (2015). InChI, the IUPAC international chemical identifier. J Cheminform 7, 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higueruelo, A.P., Jubb, H., and Blundell, T.L. (2013). Protein-protein interactions as druggable targets: recent technological advances. Curr Opin Pharmacol 13, 791–796.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.Y., and Zou, X. (2010). Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions. J Chem Inf Model 50, 262–273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, S.Y., Grinter, S.Z., and Zou, X. (2010). Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12, 12899–12908.

    Article  PubMed  CAS  Google Scholar 

  • Hubatsch, I., Ragnarsson, E.G.E., and Artursson, P. (2007). Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2, 2111–2119.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, J., Skalic, M., Martinez-Rosell, G., and De Fabritiis, G. (2018). KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model 58, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Jin, W., Barzilay, R., and Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation. arXiv:1802.04364v2.

    Google Scholar 

  • Kadurin, A., Aliper, A., Kazennov, A., Mamoshina, P., Vanhaelen, Q., Khrabrov, K., and Zhavoronkov, A. (2017)a. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 8, 10883.

    Article  PubMed  Google Scholar 

  • Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., and Zhavoronkov, A. (2017)b. druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 14, 3098–3104.

    Article  PubMed  CAS  Google Scholar 

  • Kearnes, S., Goldman, B., and Pande, V. (2016)a. Modeling industrial ADMET data with multitask networks. arXiv:1606.08793v3.

    Google Scholar 

  • Kearnes, S., Mccloskey, K., Berndl, M., Pande, V., and Riley, P. (2016)b. Molecular graph convolutions: moving beyond fingerprints. J Comput Aid Mol Design 30, 1–14.

    Article  CAS  Google Scholar 

  • Khamis, M.A., Gomaa, W., and Ahmed, W.F. (2015). Machine learning in computational docking. Artif Intell Med 63, 135–152.

    Article  PubMed  Google Scholar 

  • Kim, K.H., Kim, N.D., and Seong, B.L. (2010). Pharmacophore-based virtual screening: a review of recent applications. Expert Opin Drug Discov 5, 205–222.

    Article  PubMed  CAS  Google Scholar 

  • Kinnings, S.L., Liu, N., Tonge, P.J., Jackson, R.M., Xie, L., and Bourne, P. E. (2011). A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 51, 408–419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klaeger, S., Heinzlmeir, S., Wilhelm, M., Polzer, H., Vick, B., Koenig, P. A., Reinecke, M., Ruprecht, B., Petzoldt, S., Meng, C., et al. (2017). The target landscape of clinical kinase drugs. Science 358, eaan4368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Labbé, C.M., Kuenemann, M.A., Zarzycka, B., Vriend, G., Nicolaes, G.A. F., Lagorce, D., Miteva, M.A., Villoutreix, B.O., and Sperandio, O. (2016). iPPI-DB: an online database of modulators of protein-protein interactions. Nucleic Acids Res 44, D542–D547.

    Article  PubMed  CAS  Google Scholar 

  • Lavecchia, A., and Giovanni, C. (2013). Virtual screening strategies in drug discovery: a critical review. CMC 20, 2839–2860.

    Article  CAS  Google Scholar 

  • LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.

    Article  PubMed  CAS  Google Scholar 

  • Leelananda, S.P., and Lindert, S. (2016). Computational methods in drug discovery. Beilstein J Org Chem 12, 2694–2718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, H., Hou, J., Adhikari, B., Lyu, Q., and Cheng, J. (2017). Deep learning methods for protein torsion angle prediction. BMC BioInf 18, 417.

    Article  CAS  Google Scholar 

  • Liew, C.Y., Ma, X.H., Liu, X., and Yap, C.W. (2009). SVM model for virtual screening of Lck inhibitors. J Chem Inf Model 49, 877.

    Article  PubMed  CAS  Google Scholar 

  • Lombardo, F., and Jing, Y. (2016). In silico prediction of volume of distribution in humans. Extensive data set and the exploration of linear and nonlinear methods coupled with molecular interaction fields descriptors. J Chem Inf Model 56, 2042–2052.

    PubMed  CAS  Google Scholar 

  • Lombardo, F., Obach, R.S., Varma, M.V., Stringer, R., and Berellini, G. (2014). Clearance mechanism assignment and total clearance prediction in human based upon in silico models. J Med Chem 57, 4397–4405.

    Article  PubMed  CAS  Google Scholar 

  • Lotfi Shahreza, M., Ghadiri, N., Mousavi, S.R., Varshosaz, J., and Green, J. R. (2017). A review of network-based approaches to drug repositioning. Brief Bioinform, doi: 10.1093/bib/bbx017.

    Google Scholar 

  • Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., Peng, J., Chen, L., and Zeng, J. (2017). A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun 8, 573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lusci, A., Pollastri, G., and Baldi, P. (2013). Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53, 1563–1575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., and Svetnik, V. (2015). Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55, 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X., Jia, J., Zhu, F., Xue, Y., Li, Z., and Chen, Y. (2009). Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. CCHTS 12, 344–357.

    Article  CAS  Google Scholar 

  • Maheshwari, S., and Brylinski, M. (2016). Template-based identification of protein-protein interfaces using eFindSitePPI. Methods 93, 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Montalvo, A., Mercken, E.M., Mitchell, S.J., Palacios, H.H., Mote, P.L., Scheibye-Knudsen, M., Gomes, A.P., Ward, T.M., Minor, R.K., Blouin, M.J., et al. (2013). Metformin improves healthspan and lifespan in mice. Nat Commun 4, 2192.

    Article  PubMed  CAS  Google Scholar 

  • Mason, J.S. (2007). Introduction to the volume and overview of computer-assisted drug design in the drug discovery process. In Taylor, J.B., and Triggle, D.J., ed. Comprehensive Medicinal Chemistry II (Elsevier), pp. 1–11.

    Google Scholar 

  • Matlock, M.K., Hughes, T.B., and Swamidass, S.J. (2015). XenoSite server: a web-available site of metabolism prediction tool. Bioinformatics 31, 1136–1137.

    Article  PubMed  CAS  Google Scholar 

  • Mauri, A., Consonni, V., Pavan, M., and Todeschini, R. (2006). DRAGON software: An easy approach to molecular descriptor calculations. Match Commun Math Comput Chem 56, 237–248.

    CAS  Google Scholar 

  • Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2016). DeepTox: toxicity prediction using deep learning. Front Environ Sci, https://doi.org/10.3389/fenvs.2015.00080.

    Google Scholar 

  • Melville, J., Burke, E., and Hirst, J. (2009). Machine learning in virtual screening. CCHTS 12, 332–343.

    Article  CAS  Google Scholar 

  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. Nature 518, 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Mullard, A. (2017). The drug-maker’s guide to the galaxy. Nature 549, 445–447.

    Article  PubMed  Google Scholar 

  • Myint, K.Z., and Xie, X.Q. (2010). Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. IJMS 11, 3846–3866.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ning, X., and Karypis, G. (2011). In silico structure-activity-relationship (SAR) models from machine learning: a review. Drug Dev Res 72, 138–146.

    Article  CAS  Google Scholar 

  • O’Boyle, N.M., and Hutchison, G.R. (2008). Cinfony—combining Open Source cheminformatics toolkits behind a common interface. Chem Cent J 2, 1–10.

    Article  CAS  Google Scholar 

  • OECD. (2014). Guidance document on the validation of (quantitative) structure-activity relationship [(Q)Sar] models. 69, 1–154.

  • Olivecrona, M., Blaschke, T., Engkvist, O., and Chen, H. (2017). Molecular de-novo design through deep reinforcement learning. J Cheminform 9, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, S.J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans Knowl Data Eng 22, 1345–1359.

    Article  Google Scholar 

  • Pereira, J.C., Caffarena, E.R., and Dos Santos, C.N. (2016). Boosting docking-based virtual screening with deep learning. J Chem Inf Model 56, 2495.

    Article  PubMed  CAS  Google Scholar 

  • Pu, Y., Wang, W., Henao, R., Chen, L., Gan, Z., Li, C., and Carin, L. (2017). Adversarial symmetric variational autoencoder. arXiv:1711.04915v2.

    Google Scholar 

  • Ramsundar, B., Liu, B., Wu, Z., Verras, A., Tudor, M., Sheridan, R.P., and Pande, V. (2017). Is multitask deep learning practical for pharma? J Chem Inf Model 57, 2068–2076.

    Article  PubMed  CAS  Google Scholar 

  • Repasky, M.P., Shelley, M., and Friesner, R.A. (2007). Flexible Ligand Docking with Glide (John Wiley & Sons, Inc.).

    Book  Google Scholar 

  • Rogers, D., and Hahn, M. (2010). Extended-connectivity fingerprints. J Chem Inf Model 50, 742–754.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo, S., Adhikari, C., Kuanar, M., and Mishra, B. (2016). A short review of the generation of molecular descriptors and their applications in quantitative structure property/activity relationships. CAD 12, 181–205.

    Article  CAS  Google Scholar 

  • Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G.L., and Aspuru-Guzik, A. (2017). Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC). ChemRxiv Preprint.

    Google Scholar 

  • Santos, R., Ursu, O., Gaulton, A., Bento, A.P., Donadi, R.S., Bologa, C.G., Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T.I., et al. (2017). A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16, 19–34.

    Article  PubMed  CAS  Google Scholar 

  • Schaarschmidt, J., Monastyrskyy, B., Kryshtafovych, A., and Bonvin, A. (2017). Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age. Proteins 86, https://doi.org/10.1002/prot.25407.

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks 61, 85–117.

    Article  PubMed  Google Scholar 

  • Schneider, G., Funatsu, K., Okuno, Y., and Winkler, D. (2017). De novo drug design—Ye olde scoring problem revisited. Mol Inform 36, https://doi.org/10.1002/minf.201681031.

  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., and Wolfson, H.J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33, W363–W367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scott, D.E., Bayly, A.R., Abell, C., and Skidmore, J. (2016). Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15, 533–550.

    Article  PubMed  CAS  Google Scholar 

  • Segler, M.H.S., Kogej, T., Tyrchan, C., and Waller, M.P. (2018). Generating focussed molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci 4, 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, R.P. (2013). Time-split cross-validation as a method for estimating the goodness of prospective prediction.. J Chem Inf Model 53, 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Shin, W.H., Christoffer, C.W., and Kihara, D. (2017). In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 131, 22–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shoemaker, R.H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6, 813–823.

    Article  PubMed  CAS  Google Scholar 

  • Sim, D.S.M. (2015)a. Drug Distribution (Springer International Publishing).

    Google Scholar 

  • Sim, D.S.M. (2015)b. Drug elimination. In Chan, Y., Ng, K., and Sim, D., ed. Pharmacological Basis of Acute Care (Springer, Cham), pp. 37–47.

    Google Scholar 

  • Smith, E.G., and Wiswesser, W.J. (1975). The Wiswesser Line-Formula Chemical Notation (New York: McGraw-Hill).

    Google Scholar 

  • Spencer, M., Eickholt, J., and Jianlin Cheng, J. (2015). A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinf 12, 103–112.

    Article  CAS  Google Scholar 

  • Subramanian, G., Ramsundar, B., Pande, V., and Denny, R.A. (2016). Computational modeling of β-secretase 1 (BACE-1) inhibitors using ligand based approaches. J Chem Inf Model 56, 1936–1949.

    Article  PubMed  CAS  Google Scholar 

  • Sushko, I., Salmina, E., Potemkin, V.A., Poda, G., and Tetko, I.V. (2012). ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J Chem Inf Model 52, 2310–2316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43, D447–D452.

    Article  PubMed  CAS  Google Scholar 

  • Talele, T., Khedkar, S., and Rigby, A. (2010). Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. CTMC 10, 127–141.

    Article  CAS  Google Scholar 

  • Tian, S., Li, Y., Wang, J., Zhang, J., and Hou, T. (2011). ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm 8, 841–851.

    PubMed  CAS  Google Scholar 

  • Tishby, N., and Zaslavsky, N. (2015). Deep learning and the information bottleneck principle. Paper presented at: Information Theory Workshop, arXiv:1503.02406v1.

    Google Scholar 

  • Todeschini, R., and Consonni, V. (2009). Molecular Descriptors for Chemoinformatics (Wiley-VCH).

    Book  Google Scholar 

  • Turner, J.R. (2010). New Drug Development (Springer New York).

    Book  Google Scholar 

  • Unterthiner, T., Mayr, A., Klambauer, G., Steijaert, M., Ceulemans, H., Wegner, J.K., and Hochreiter, S. (2014). Deep learning as an opportunity in virtual screening. Paper presented at: The Workshop on Deep Learning & Representation Learning.

    Google Scholar 

  • Urban, G., Subrahmanya, N., and Baldi, P. (2018). Inner and outer recursive neural networks for chemoinformatics applications. J Chem Inf Model 58, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Vakser, I.A. (2014). Protein-protein docking: from interaction to interactome. BioPhys J 107, 1785–1793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valkov, E., Sharpe, T., Marsh, M., Greive, S., and Hyvonen, M. (2012). Targeting protein-protein interactions and fragment-based drug discovery. Top Curr Chem 317, 145–179.

    Article  PubMed  CAS  Google Scholar 

  • Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016). Matching networks for one shot learning. Papers published at the Neural Information Processing Systems Conference.

    Google Scholar 

  • Vohora, D., and Singh, G. (2017). Pharmaceutical Medicine and Translational Clinical Research (Academic Press).

    Google Scholar 

  • Voosen, P. (2017). The AI detectives. Science 357, 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Wallach, I., Dzamba, M., and Heifets, A. (2015). AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery. Mathematische Zeitschrift 47, 34–46.

    Google Scholar 

  • Wang, C., and Zhang, Y. (2017). Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J Comput Chem 38, 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Luo, C., Shan, C., You, Q., Lu, J., Elf, S., Zhou, Y., Wen, Y., Vinkenborg, J.L., Fan, J., et al. (2015). Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem 7, 968–979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, N.N., Dong, J., Deng, Y.H., Zhu, M.F., Wen, M., Yao, Z.J., Lu, A.P., Wang, J.B., and Cao, D.S. (2016). ADME properties evaluation in drug discovery: prediction of Caco-2 cell permeability using a combination of NSGA-II and boosting. J Chem Inf Model 56, 763–773.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Sun, S., Li, Z., Zhang, R., and Xu, J. (2017). Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol 13, e1005324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, W., Yang, S., Zhang, X., and Li, J. (2014). Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30, 2923–2930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weininger, D. (2011). Simplified Molecular Input Line Entry Specification.

    Google Scholar 

  • Willett, P. (2006). Similarity-based virtual screening using 2D fingerprints. Drug Discovery Today 11, 1046–1053.

    Article  PubMed  CAS  Google Scholar 

  • Wójcikowski, M., Zielenkiewicz, P., and Siedlecki, P. (2015). Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J Cheminform 7, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K., and Pande, V. (2017). MoleculeNet: A benchmark for molecular machine learning. arXiv:1703.00564v2.

    Google Scholar 

  • Xing, J., Lu, W., Liu, R., Wang, Y., Xie, Y., Zhang, H., Shi, Z., Jiang, H., Liu, Y.C., Chen, K., et al. (2017). Machine-learning-assisted approach for discovering novel inhibitors targeting bromodomain-containing protein 4. J Chem Inf Model 57, 1677–1690.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Pei, J., and Lai, L. (2017). Deep learning based regression and multiclass models for acute oral toxicity prediction with automatic chemical feature extraction. J Chem Inf Model 57, 2672–2685.

    Article  PubMed  CAS  Google Scholar 

  • Xue, L.C., Dobbs, D., Bonvin, A.M.J.J., and Honavar, V. (2015). Computational prediction of protein interfaces: A review of data driven methods. FEBS Lett 589, 3516–3526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232–i240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yap, C.W. (2011). PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32, 1466–1474.

    Article  PubMed  CAS  Google Scholar 

  • Zaretzki, J., Matlock, M., and Swamidass, S.J. (2013). XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks. J Chem Inf Model 53, 3373–3383.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q.C., Petrey, D., Norel, R., and Honig, B.H. (2010). Protein interface conservation across structure space. Proc Natl Acad Sci USA 107, 10896–10901.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zsoldos, Z., Reid, D., Simon, A., Sadjad, S.B., and Johnson, A.P. (2007). eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graphics Model 26, 198–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21210003 and 81230076 to H.J., 81773634 to M.Z. and 81430084 to K.C.), the “Personalized Medicines—Molecular Signature-based Drug Discovery and Development”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12050201 to M.Z.), National Key Research & Development Plan (2016YFC1201003 to M.Z.), and the National Basic Research Program (2015CB910304 to X.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyue Zheng or Hualiang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Xing, J., Li, X. et al. Artificial intelligence in drug design. Sci. China Life Sci. 61, 1191–1204 (2018). https://doi.org/10.1007/s11427-018-9342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9342-2

Keywords

Navigation