Skip to main content
Log in

Modes of genetic adaptations underlying functional innovations in the rumen

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers. We analyzed 897 transcriptomes from three Cetartiodactyla lineages: ruminants, camels and cetaceans, as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations. We identified genes with relatively high expression in the rumen, of which many appeared to be recruited from other tissues. These genes show functional enrichment in ketone body metabolism, regulation of microbial community, and epithelium absorption, which are the most prominent biological processes involved in rumen innovations. Several modes of genetic change underlying rumen functional innovations were uncovered, including coding mutations, genes newly evolved, and changes of regulatory elements. We validated that the key ketogenesis rate-limiting gene (HMGCS2) with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals. Two newly evolved genes (LYZ1 and DEFB1) are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium. Furthermore, we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment. These results greatly improve our understanding of rumen evolution and organ evo-devo in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. (1983). Molecular Biology Of The Cell (Garland Publishing).

  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S. (2016). FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Cambridge, UK.

    Google Scholar 

  • Baldwin VI, R.L., McLeod, K.R., Klotz, J.L., and Heitmann, R.N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J Dairy Sci 87, E55–E65.

    Article  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bousquet, O., Ma, L., Yamada, S., Gu, C., Idei, T., Takahashi, K., Wirtz, D., and Coulombe, P.A. (2001). The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro. J Cell Biol 155, 747–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantalapiedra, J.L., Fitzjohn, R.G., Kuhn, T.S., Fernández, M.H., DeMiguel, D., Azanza, B., Morales, J., and Mooers, A.Ø. (2014). Dietary innovations spurred the diversification of ruminants during the Caenozoic. Proc R Soc B 281, 20132746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Qiu, Q., Jiang, Y., Wang, K., Lin, Z., Li, Z., Bibi, F., Yang, Y., Wang, J., Nie, W., et al. (2019). Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202.

    Article  CAS  PubMed  Google Scholar 

  • Clark, E.L., Bush, S.J., McCulloch, M.E.B., Farquhar, I.L., Young, R., Lefevre, L., Pridans, C., Tsang, H.G., Wu, C., Afrasiabi, C., et al. (2017). A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet 13, e1006997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Alessio, A.C., Fan, Z.P., Wert, K.J., Baranov, P., Cohen, M.A., Saini, J. S., Cohick, E., Charniga, C., Dadon, D., Hannett, N.M., et al. (2015). A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep 5, 763–775.

    Article  CAS  Google Scholar 

  • Dehority, B.A. (2002). Gastrointestinal tracts of herbivores, particularly the ruminant: anatomy, physiology and microbial digestion of plants. J Appl Anim Res 21, 145–160.

    Article  Google Scholar 

  • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Duffield, T.F., Merrill, J.K., and Bagg, R.N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. J Anim Sci 90, 4583–4592.

    Article  CAS  PubMed  Google Scholar 

  • Fang, L., Liu, S., Liu, M., Kang, X., Lin, S., Li, B., Connor, E.E., Baldwin Vi, R.L., Tenesa, A., Ma, L., et al. (2019). Functional annotation of the cattle genome through systematic discovery and characterization of chromatin states and butyrate-induced variations. BMC Biol 17, 16–68.

    Article  CAS  Google Scholar 

  • Fath El-Bab, M.R., Schwarz, R., and Ali, A.M. (1983). Micromorphological studies on the stomach of sheep during prenatal life. Anatom Histol Embryol 12, 139–153.

    Article  CAS  Google Scholar 

  • Feng, Z., Ren, X., Fang, Y., Yin, Y., Huang, C., Zhao, Y., and Wang, Y. (2020). scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization. Bioinformatics 36, 2474–2485.

    Article  CAS  PubMed  Google Scholar 

  • Frazee, A.C., Pertea, G., Jaffe, A.E., Langmead, B., Salzberg, S.L., and Leek, J.T. (2015). Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol 33, 243–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffen, S.L. (2008). An overview of IL-17 function and signaling. Cytokine 43, 402–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallant, J.R., Traeger, L.L., Volkening, J.D., Moffett, H., Chen, P.H., Novina, C.D., Phillips, G.N., Anand, R., Wells, G.B., Pinch, M., et al. (2014). Genomic basis for the convergent evolution of electric organs. Science 344, 1522–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gareus, R., Huth, M., Breiden, B., Nenci, A., Rösch, N., Haase, I., Bloch, W., Sandhoff, K., and Pasparakis, M. (2007). Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation. Nat Cell Biol 9, 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison Iii, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–345.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T.R. (2008). The evolution of complex organs. Evo Edu Outreach 1, 358–389.

    Article  Google Scholar 

  • Griffith, O.W., and Wagner, G.P. (2017). The placenta as a model for understanding the origin and evolution of vertebrate organs. Nat Ecol Evol 1, 0072.

    Article  Google Scholar 

  • Hassanin, A., Delsuc, F., Ropiquet, A., Hammer, C., Jansen van Vuuren, B., Matthee, C., Ruiz-Garcia, M., Catzeflis, F., Areskoug, V., Nguyen, T.T., et al. (2012). Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biologies 335, 32–50.

    Article  PubMed  Google Scholar 

  • Hubisz, M.J., Pollard, K.S., and Siepel, A. (2011). PHAST and RPHAST: phylogenetic analysis with space/time models. Briefings BioInf 12, 41–51.

    Article  CAS  Google Scholar 

  • Huttner, K.M., Brezinski-Caliguri, D.J., Mahoney, M.M., and Diamond, G. (1997). Antimicrobial peptide expression is developmentally regulated in the ovine gastrointestinal tract. In Molecular and Cellular Studies of Rumen Epithelial Metabolism (New Orleans), pp. 297S–299S.

  • Janis, C. (1976). The evolutionary strategy of the equidae and the origins of rumen and cecal digestion. Evolution 30, 757–774.

    Article  PubMed  Google Scholar 

  • Ji, R., Cui, P., Ding, F., Geng, J., Gao, H., Zhang, H., Yu, J., Hu, S., and Meng, H. (2009). Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus). Anim Genets 40, 377–382.

    Article  CAS  Google Scholar 

  • Jiang, Y., Xie, M., Chen, W., Talbot, R., Maddox, J.F., Faraut, T., Wu, C., Muzny, D.M., Li, Y., Zhang, W., et al. (2014). The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344, 1168–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.L. (2001). Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305, 567–580.

    Article  CAS  PubMed  Google Scholar 

  • Krueger, F. (2015). A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Babraham Bioinformatics, Cambridge, UK.

    Google Scholar 

  • Kryuchkova-Mostacci, N., and Robinson-Rechavi, M. (2017). A benchmark of gene expression tissue-specificity metrics. Brief Bioinform 18, 205–214.

    CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., Suleski, M., and Hedges, S.B. (2017). TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34, 1812–1819.

    Article  CAS  PubMed  Google Scholar 

  • Kypriotou, M., Huber, M., and Hohl, D. (2012). The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the ‘fused genes’ family. Exp Dermatol 21, 643–649.

    Article  CAS  PubMed  Google Scholar 

  • Land, M.F. (1988). The optics of animal eyes. Contemp Phys 29, 435–455.

    Article  Google Scholar 

  • Land, M.F., and Fernald, R.D. (1992). The evolution of eyes. Annu Rev Neurosci 15, 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  • Langer, P. (1988). The Mammalian Herbivore Stomach: Comparative Anatomy, Function and Evolution (New York: Gustav Fischer Verlag).

    Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leal, F., and Cohn, M.J. (2016). Loss and re-emergence of legs in snakes by modular evolution of sonic hedgehog and HOXD enhancers. Curr Biol 26, 2966–2973.

    Article  CAS  PubMed  Google Scholar 

  • Leng, R.A., and Nolan, J.V. (1982). Nitrogen metabolism in the rumen. J Dairy Sci 67, 1072–1089.

    Article  Google Scholar 

  • Letunic, I., and Bork, P. (2018). 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46, D493–D496.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079.

    PubMed  PubMed Central  Google Scholar 

  • Lynch, V.J., Leclerc, R.D., May, G., and Wagner, G.P. (2011). Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43, 1154–1159.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, D.H., Szabo, R., Molinolo, A.A., and Bugge, T.H. (2014). TMPRSS13 deficiency impairs stratum corneum formation and epidermal barrier acquisition. Biochem J 461, 487–495.

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen, S.D., Aagnes, T.H., Sørmo, W., Nordøy, E.S., Blix, A.S., and Olsen, M.A. (1995). Digestive physiology of minke whales. Dev Marine Biol 4, 351–359.

    Google Scholar 

  • Millen, D.D., De Beni Arrigoni, M., and Pacheco, R.D.L. (2016). Rumenology (Switzerland: Springer International Publishing).

    Book  Google Scholar 

  • Newman, J.C., and Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25, 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Novacek, M.J. (1992). Mammalian phytogeny: shaking the tree. Nature 356, 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8, 785–786.

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D. M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  • Ren, Z., Yao, R., Liu, Q., Deng, Y., Shen, L., Deng, H., Zuo, Z., Wang, Y., Deng, J., Cui, H., et al. (2019). Effects of antibacterial peptides on rumen fermentation function and rumen microorganisms in goats. PLoS ONE 14, e0221815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risk, J.M., Ruhrberg, C., Hennies, H.C., Mills, H.S., Di Colandrea, T., Evans, K.E., Ellis, A., Watt, F.M., Bishop, D.T., Spurr, N.K., et al. (1999). Envoplakin, a possible candidate gene for focal NEPPK/esophageal cancer (TOC): the integration of genetic and physical maps of the TOC region on 17q25. Genomics 59, 234–242.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.

    Article  CAS  Google Scholar 

  • Saulo Gusmão Da Silva De Tarso, D., and Oliveira, J.A.B.A. (2016). Ruminants as part of the global food system: how evolutionary adaptation sand diversity of the digestive system brought them to the future. J Dairy Vet Anim Res 3, 171–176.

    Google Scholar 

  • Schägger, H. (2006). Tricine-SDS-PAGE. Nat Protoc 1, 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Seo, K.W., Wang, Y., Kokubo, H., Kettlewell, J.R., Zarkower, D.A., and Johnson, R.L. (2006). Targeted disruption of the DM domain containing transcription factor Dmrt2 reveals an essential role in somite patterning. Dev Biol 290, 200–210.

    Article  CAS  PubMed  Google Scholar 

  • Sheth, J., Mistri, M., Patel, H., Ankleshwaria, C., and Parikh, A. (2014). Autosomal dominant mutation in COL7A1 gene causing epidermolysis bullosa dystrophica. Mol Cytogenet 7, P58.

    Article  Google Scholar 

  • Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15, 1034–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, R., and Brown, G. (2011). DiffBind: differential binding analysis of ChIP-Seq peak data. R package version.

  • Steven, D.H., Marshall, A.B., and Phillipson, A.T. (1970). Organization of the rumen epithelium. In Physiology of Digestion and Metabolism in the Ruminant (Cambridge).

  • Stevens, C.E., and Hume, I.D. (2004). Comparative physiology of the vertebrate digestive system (Cambridge University Press).

  • Tarpley, R.J., Sis, R.F., Albert, T.F., Dalton, L.M., and George, J.C. (1987). Observations on the anatomy of the stomach and duodenum of the bowhead whale, Balaena mysticetus. Am J Anat 180, 295–322.

    Article  CAS  PubMed  Google Scholar 

  • Thornton, J.H., and Owens, F.N. (1981). Monensin supplementation and in vivo methane production by steers. J Anim Sci 52, 628–634.

    Article  CAS  PubMed  Google Scholar 

  • Thumelin, S., Forestier, M., Girard, J., and Pegorier, J.P. (1993). Developmental changes in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in rat liver, intestine and kidney. Biochem J 292, 493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, L.A.P. (2016). Interaction between digestive strategy and niche specialization predicts speciation rates across herbivorous mammals. Am Natist 187, 468–480.

    Article  Google Scholar 

  • Trang, N.V., Choisy, M., Nakagomi, T., Chinh, N.T.M., Doan, Y.H., Yamashiro, T., Bryant, J.E., Nakagomi, O., and Anh, D.D. (2015). Determination of cut-off cycle threshold values in routine RT-PCR assays to assist differential diagnosis of norovirus in children hospitalized for acute gastroenteritis. Epidemiol Infect 143, 3292–3299.

    Article  CAS  PubMed  Google Scholar 

  • Vallenas, A., Cummings, J.F., and Munnell, J.F. (1971). A gross study of the compartmentalized stomach of two new-world camelids, the llama and guanaco. J Morphol 134, 399–423.

    Article  CAS  PubMed  Google Scholar 

  • van Beelen, A.J., Zelinkova, Z., Taanman-Kueter, E.W., Muller, F.J., Hommes, D.W., Zaat, S.A.J., Kapsenberg, M.L., and de Jong, E.C. (2007). Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660–669.

    Article  CAS  PubMed  Google Scholar 

  • von Engelhardt, W., Dycker, C., and Lechner-Doll, M. (2007). Absorption of short-chain fatty acids, sodium and water from the forestomach of camels. J Comp Physiol B 177, 631–640.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., and Chai, J. (2020). Molecular actions of NLR immune receptors in plants and animals. Sci China Life Sci 63, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Ma, C., and Kemmner, W. (2013). Wdr66 is a novel marker for risk stratification and involved in epithelial-mesenchymal transition of esophageal squamous cell carcinoma. BMC Cancer 13, 137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Zhang, C., Wang, N., Li, Z., Heller, R., Liu, R., Zhao, Y., Han, J., Pan, X., Zheng, Z., et al. (2019). Genetic basis of ruminant headgear and rapid antler regeneration. Science 364, eaav6335.

    Article  CAS  PubMed  Google Scholar 

  • Warner, E.D. (1958). The organogenesis and early histogenesis of the bovine stomach. Am J Anat 102, 33–63.

    Article  CAS  PubMed  Google Scholar 

  • Wardrop, I.D. (1961). Some preliminary observations on the histological development of the fore-stomachs of the lamb I. Histological changes due to age in the period from 46 days of foetal life to 77 days of postnatal life. J Agric Sci 57, 335–341.

    Article  Google Scholar 

  • Wei, F. (2020). A new era for evolutionary developmental biology in non-model organisms. Sci China Life Sci 63, 1251–1253.

    Article  PubMed  Google Scholar 

  • Xiang, R., Oddy, V.H., Archibald, A.L., Vercoe, P.E., and Dalrymple, B.P. (2016). Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues. PeerJ 4, e1762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong, Z., Ren, S., Chen, H., Liu, Y., Huang, C., Zhang, Y.L., Odera, J.O., Chen, T., Kist, R., Peters, H., et al. (2018). PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol 244, 164–175.

    Article  CAS  PubMed  Google Scholar 

  • Yáñez-Ruiz, D.R., Abecia, L., and Newbold, C.J. (2015). Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front Microbiol 6.

  • Yang, J., and Zhang, Y. (2015). I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43, W174–W181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, R.Y., Quan, J., Sodaei, R., Aguet, F., Segrè, A.V., Allen, J.A., Lanz, T.A., Reinhart, V., Crawford, M., and Hasson, S., et al., (2018). A systematic survey of human tissue-specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation. bioRxiv, https://doi.org/10.1101/311563.

  • Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yu, G., Wang, L.G., and He, Q.Y. (2015). ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383.

    Article  CAS  PubMed  Google Scholar 

  • Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeder, M.A. (2008). Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc Natl Acad Sci USA 105, 11597–11604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B. E., Nussbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y.E., Vibranovski, M.D., Krinsky, B.H., and Long, M. (2010a). Age-dependent chromosomal distribution of male-biased genes in Drosophila. Genome Res 20, 1526–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.E., Vibranovski, M.D., Landback, P., Marais, G.A.B., and Long, M. (2010b). Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol 8, e1000494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, X., Sun, D., Guang, X., Ma, S., Fang, X., Mariotti, M., Nielsen, R., Gladyshev, V.N., and Yang, G. (2018). Molecular footprints of aquatic adaptation including bone mass changes in cetaceans. Genome Biol Evol 10, 967–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (31822052, 31572381), the National Thousand Youth Talents Plan to Y.J., National Natural Science Foundation of China (31660644) to S.H., National Natural Science Foundation of China (41422604) to S.L. The Villum Foundation (VKR 023447) and the Independent Research Fund Denmark (8049-00098B) are thanked for supporting R.H. We thank the members of the FANNG project for sharing their transcriptome data. We thank Yongchuan Li, Zhengzhi Wei, Zixin Yang, and Haiyu Gao from Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, for helping to collect samples from the porpoise and whale. We thank High-Performance Computing (HPC) of Northwest A&F University (NWAFU) for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Wang or Yu Jiang.

Ethics declarations

Compliance and ethics Two provisional Chinese patent applications on potential application in the antimicrobial and antibiotic substitute by way of the DEFB1 gene and LYZ1 gene have been filed by Northwest A&F University (application number 202010100677.8 and 202010097562.8), where Y.J., X.P., X.C, and W.W. are listed as inventors. The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Cai, Y., Li, Z. et al. Modes of genetic adaptations underlying functional innovations in the rumen. Sci. China Life Sci. 64, 1–21 (2021). https://doi.org/10.1007/s11427-020-1828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1828-8

Keywords

Navigation