Skip to main content
Log in

Pathophysiologie der Schmerzen bei diabetischer Polyneuropathie

Pathophysiology of pain in diabetic polyneuropathy

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Die diabetische Polyneuropathie (dPNP) stellt die häufigste Ursache von Polyneuropathien dar. In ca. 20 % der Fälle ist sie mit Schmerzen assoziiert. Diese müssen jedoch nicht zwangsläufig neuropathischer Genese sein. Die differenzialdiagnostische Abgrenzung gegenüber Schmerzen z. B. im Rahmen einer zusätzlich vorliegenden pAVK (periphere arterielle Verschlusskrankheit) oder durch muskuläre Imbalancen bei Afferenzstörung ist für den Behandlungserfolg essenziell. Der Nachweis einer Schädigung des somatosensorischen Systems ist Voraussetzung für die Kategorisierung der Schmerzen als neuropathisch. Pathophysiologisch ist die Ursache der dPNP sowie auch der neuropathischen Schmerzen komplex. Neben die Ätiologie übergreifenden allgemeinen Pathomechanismen neuropathischer Schmerzen wurden auch diabetesspezifische Faktoren wie der Stoffwechselmetabolit Methylglyoxal oder unabhängige Faktoren wie „gain of function mutations“ am NaV1.7 (spannungsabhängiger Natriumionenkanal) als Ursache neuropathischer Schmerzen identifiziert. Auch eine zu rasche Senkung des Blutzuckerspiegels nach langjähriger diabetischer Stoffwechsellage kann zur schmerzhaften „treatment-induced neuropathy of diabetes“ (TIND) führen. Diese pathophysiologische Vielfalt der Schmerzen bei dPNP verdeutlicht eindrücklich, dass „Schmerz nicht gleich Schmerz ist“.

Abstract

Diabetic polyneuropathy (dPNP) is the most common cause of polyneuropathy. In about 20% it is associated with pain. However, pain does not have to be neuropathic. The differentiation of the pain, e. g. in the context of a present arterial occlusive disorder or by muscular imbalances in case of impaired afferent nerve function, is essential for the success of the treatment. Proof of damage to the somatosensory nervous system is a prerequisite for categorizing pain as neuropathic. Pathophysiologically, the cause of dPNP as well as neuropathic pain is complex. In addition to generally valid pathomechanisms of neuropathic pain, diabetes-specific factors such as the metabolite methylglyoxal or independent “gain of function” mutations on the NaV1.7 channel on nociceptive afferents as a cause of neuropathic pain have been identified. Also, a rapid normalization of blood glucose after years of diabetes can lead to the painful “treatment-induced neuropathy of diabetes” (TIND). This pathophysiological diversity of pain makes it clear that the term “pain is not pain” might be particularly true in dPNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

ADP:

Adenosindiphosphat

AGE:

„Advanced glycation end products“

ATPase:

Adenosintriphosphatase

dPNP:

Diabetische Polyneuropathie

GABA:

Gammaaminobuttersäure

NaV :

Spannungsabhängiger Natriumionenkanal

NGF:

„Nerve growth factor“

pAVK:

Periphere arterielle Verschlusskrankheit

PNP:

Polyneuropathie

QST:

Quantitative sensorische Testung

TIND:

„Treatment-induced neuropathy of diabetes“

TRPA1:

„Transient receptor potential cation channel, subfamily A, member 1“

Literatur

  1. Baron R, Maier C, Attal N et al (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158:261–272

    Article  Google Scholar 

  2. Bierhaus A, Fleming T, Stoyanov S et al (2012) Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 18:926–933

    Article  CAS  Google Scholar 

  3. Birklein F, Baron R, Gaul C et al (2016) Pain—a neglected neurological issue. Nervenarzt 87:609–615

    Article  CAS  Google Scholar 

  4. Blesneac I, Themistocleous AC, Fratter C et al (2018) Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain 159:469–480

    CAS  PubMed  Google Scholar 

  5. Chan AC, Wilder-Smith EP (2016) Small fiber neuropathy: Getting bigger! Muscle Nerve 53:671–682

    Article  Google Scholar 

  6. Daousi C, Macfarlane IA, Woodward A et al (2004) Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabet Med 21:976–982

    Article  CAS  Google Scholar 

  7. Demant DT, Lund K, Vollert J et al (2014) The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 155:2263–2273

    Article  CAS  Google Scholar 

  8. Eberhardt MJ, Filipovic MR, Leffler A et al (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287:28291–28306

    Article  CAS  Google Scholar 

  9. Finnerup NB, Haroutounian S, Kamerman P et al (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599–1606

    Article  CAS  Google Scholar 

  10. Freynhagen R, Baron R, Gockel U et al (2006) painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin 22:1911–1920

    Article  Google Scholar 

  11. Geber C, Baumgartner U, Schwab R et al (2009) Revised definition of neuropathic pain and its grading system: an open case series illustrating its use in clinical practice. Amj Med 122:3–12

    Article  Google Scholar 

  12. Geber C, Breimhorst M, Burbach B et al (2013) Pain in chemotherapy-induced neuropathy—more than neuropathic? Pain 154:2877–2887

    Article  CAS  Google Scholar 

  13. Gerritsen J, Dekker JM, Tenvoorde BJ et al (2001) Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 24:1793–1798

    Article  CAS  Google Scholar 

  14. Gibbons CH, Freeman R (2015) Treatment-induced neuropathy of diabetes: an acute, iatrogenic complication of diabetes. Brain 138:43–52

    Article  Google Scholar 

  15. Kramer HH, Rolke R, Bickel A et al (2004) Thermal thresholds predict painfulness of diabetic neuropathies. DiabetesCare 27:2386–2391

    Article  Google Scholar 

  16. Maier C, Baron R, Tolle TR et al (2010) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150:439–450

    Article  CAS  Google Scholar 

  17. Mellgren SI, Nolano M, Sommer C (2013) The cutaneous nerve biopsy: technical aspects, indications, and contribution. Handb Clin Neurol 115:171–188

    Article  Google Scholar 

  18. Raputova J, Srotova I, Vlckova E et al (2017) Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain 158:2340–2353

    Article  Google Scholar 

  19. Sadosky A, Schaefer C, Mann R et al (2013) Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: results from a retrospective chart review and cross-sectional survey. Diabetes Metab Syndr Obes 6:79–92

    Article  Google Scholar 

  20. Sloan G, Shillo P, Selvarajah D et al (2018) A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 144:177–191

    Article  Google Scholar 

  21. Tesfaye S, Chaturvedi N, Eaton SE et al (2005) Vascular risk factors and diabetic neuropathy. N Engl J Med 352:341–350

    Article  CAS  Google Scholar 

  22. Tolle T, Xu X, Sadosky AB (2006) Painful diabetic neuropathy: a cross-sectional survey of health state impairment and treatment patterns. J Diabetes Complicat 20:26–33

    Article  Google Scholar 

  23. Vollert J, Magerl W, Baron R et al (2018) Pathophysiological mechanisms of neuropathic pain: comparison of sensory phenotypes in patients and human surrogate pain models. Pain 159:1090–1102

    Article  Google Scholar 

  24. Ziegler D, Papanas N, Zhivov A et al (2014) Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 63:2454–2463

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Birklein.

Ethics declarations

Interessenkonflikt

C. Geber und F. Birklein geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geber, C., Birklein, F. Pathophysiologie der Schmerzen bei diabetischer Polyneuropathie. Diabetologe 15, 641–646 (2019). https://doi.org/10.1007/s11428-019-0479-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-019-0479-3

Schlüsselwörter

Keywords

Navigation