Skip to main content
Log in

Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Based on comprehensive studies in petrography, petrofabric analysis and geochemistry, this paper describes a unique and rare laminated micritic ferruginous primary dolostone crystallized and precipitated from the alkaline hot brine under the conditions of the Mesozoic faulted lake basin. The main rock-forming mineral of this dolostone is ferruginous dolomite with a micritic structure. This dolomite mostly exhibits laminae of 0.1–1 mm thick and is often discovered with other minerals, such as albite, analcite, barite and dickite, which have at least two types of interbedded laminae. Petrogeochemistry reveals that this dolostone contains a large number of typomorphic elements of hydrothermal sedimentation, including Sb, Ba, Sr, Mn, and V. In addition, the LREE is in relatively high concentrations and possesses the typical REE distribution pattern with negative Eu anomaly. Oxygen isotope values (δ18OPDB) range from 5.89‰ to 14.15‰ with an average of 9.69‰. The ratio of 87Sr/86Sr is between 0.711648 and 0.719546, with an average of 0.714718. These data indicate that the depositional environment is a stable, blocked, anoxic low-lying hot brine pool in the bottom of deep lake controlled by basement faults. The hydrothermal fluid is the alkaline hot brine formed by the combination of the infiltration lake water and mantle-derived magmatic water, consisting of many ions, including Ca2+, Mg2+ and Fe2+. Under the driving flow power of magmatic heat, gravity and compaction, the hydrothermal fluid overcame the overburden pressure and hydrostatic pressure of the lake water body, and boiled to explosion, and then the explosion shattered the original laminated micritic ferruginous primary dolostone near the vent and then formed a new type of dolostone called shattered “hydroexplosion breccias”. In the low-lying, unperturbed hot brine pool, far from the vent, the laminated micritic ferruginous primary dolostone was quickly crystallized and chemicals precipitated from the hydrotherm. This study of special rocks contributes to research into the causes of the formation of lacustrine carbonate rocks and dolostone. In particular, it provides new examples and research insights for future studies of the lacustrine dolomite from the similar Mesozoic and Cenozoic basins in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Aasm I S, Lonnee J S, Clarke J. 2002. Multiple fluid flow events and the formation of saddle Dolomite: Case studies from the Middle Devonian of the Western Canada sedimentary basin. Mar Petrol Geol, 19: 209–217

    Article  Google Scholar 

  • Al-Aasm I S, Vernon M. 2007. Waulsortian-like mounds of the Mississippian Pekisko Formation, Northwestern Alberta: Petrographic and chemical attributes. Mar Petrol Geol, 24: 616–631

    Article  Google Scholar 

  • Al-Aasm I S. 2003. Origin and characterization of hydrothermal dolomite in the Western Canada sedimentary basin. J Geochem Explor, 78–79: 9–15

    Article  Google Scholar 

  • Blendinger W. 2004, Sea level changes versus Hydrothermal Diagenesis: Origin of Triassic Carbonate Platform cycles in the Dolomites, Italy. Sediment Geol, 169: 21–28

    Article  Google Scholar 

  • Boni M, Iannacea A, Bechstadtb T, et al. 2000. Hydrothermal dolomites in SW Sardinia (Italy) and Cantabria (NW Spain): Evidence for late to post-Variscan widespread fluid-flow events. J Geochem Explor, 69–70: 225–228

    Article  Google Scholar 

  • Bonnemaison M. 1986. Les “filons de quartz aurifère”: un casparticulier de shear zone aurifère. Chron Rech Minière, 54: 55–66

    Google Scholar 

  • Brigaud B, Durlet C, Deconinck J, et al. 2009. The origin and timing of multiphase cementation in Carbonates: Impact of regional scale geodynamic events on the middle Jurassic limestones diagenesis (Paris Basin, France). Sediment Geol, 222: 161–180

    Article  Google Scholar 

  • Brown, A C. 1993. Sediment-host of stratiform copper deposits. Geosci Can, 19: 125–141

    Google Scholar 

  • Caline B, Sudrie M, López-Horgue M A, et al. 2006. Fault-related hydrothermal dolomites of Cretaceous platform carbonates outcropping in the Karrantza area (North Spain): Lessons learned for a better characterisation of subsurface Dolomite Reservoirs. In: 17th Int Sedimentol Cong, Fukuoka, Japan

    Google Scholar 

  • Do Campo M, del P C, Jiménez-Millán J, et al. 2007. Clay mineral assemblages and analcime formation in a Palaeogene fluvial-lacustrine sequence (Maíz Gordo Formation Palaeogen) from northwestern Argentina. Sediment Geol, 201: 56–74

    Article  Google Scholar 

  • Chen D Z, Qing H R, Yang C. 2004. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from Guilin area, South China. Sedimentary, 561: 1029–1051

    Google Scholar 

  • Chen D Z. 2008. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs (in Chinese). Oil Gas Geol, 29: 614–622

    Google Scholar 

  • Davies G R, Smith Jr L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull, 90: 1641–1690

    Article  Google Scholar 

  • Deckker P D, Last W M. 1988. Modern dolomite deposition in continental, saline lakes, Western Victoria, Australia. Geology, 16: 29–32

    Article  Google Scholar 

  • Dehler C M, Elrick M, Bloch J D, et al. 2005. High-resolution δ 13C stratigraphy of Chuar Group (ca 770–742 Ma) Grand Canyon: Implications for Mid-Neoproterozoic climate change. Geol Soci Am Bull, 117: 32–45

    Article  Google Scholar 

  • Fan M T, Yang L K, Fang G Y, et al. 2003. Origin of lacustrine hydrothermal sedimentary rock (Lower Cretaceous) in Qingxi Sag and its significance (in Chinese). Acta Sediment Sin, 21: 560–564

    Google Scholar 

  • Faure G. 1986. Principles of Isotope Geology. 2nd ed. New York: John Wiley and Sons, 160–230

    Google Scholar 

  • Folk R L. 1993. SEM imaging of bacteria and Nannobacteria in carbonate sediments and rocks. J Sediment Petrol, 63: 990–999

    Google Scholar 

  • Folk R L, Land L S. 1975. Mg/Ca ratio and salinity: Two controls over crystallization of dolomite. AAPG Bull, 59: 60–68

    Google Scholar 

  • Frimmel H E. 2009. Trace element distribution in Neoproterzoic carbonates as palaeoenvironmental indicator. Chem Geol, 258: 338–353

    Article  Google Scholar 

  • Gao X, Wang P K, Li Q Y, et al. 2010. The precise naming and mineralogical characteristics of ferruginous lacustrine dolomite in Well CCSD-SK (in Chinese). Acta Petrol Mineral, 29: 213–218

    Google Scholar 

  • Gasparrinia M, Bechstadta T, Bonib M. 2006. Massive hydrothermal dolomites in the Southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Mar Petrol Geol, 23: 543–568

    Article  Google Scholar 

  • Ghobarkar H, Schäf O. 1990. Effect of temperature on hydrothermal synthesis of Analcime and Visite. Mat Sci Eng, B60: 163–167

    Google Scholar 

  • Huang Z C, Yang S Y, Chen Z N. 1997, Mineralogical correlation between primary and replacement dolomites. Sci China Ser D-Earth Sci, 40: 91–98

    Article  Google Scholar 

  • Humphrisi S E, Bach W. 2005. On the Sr isotope and REE compositions of Anhydrites from the TAG Seafloor hydrothermal system. Geochim Cosmochim Acta, 69: 1511–1525

    Article  Google Scholar 

  • Jia S S, Wang E D, Fu J F, et al. 2011. Geological differences and mineralization unity of the key gold ore concentrated regions in eastern Hebei and western Liaoning Provinces (in Chinese). Acta Geol Sin, 85: 1493–1505

    Google Scholar 

  • Kimura H, Watanabe Y. 2001. Ocean anoxia at the Precambrian-Cambrian boundary. Geology, 29: 995–998

    Article  Google Scholar 

  • Klinkhammer G P, Elderfield H, Edmond J M, et al. 1994. Geochemical implications of rare earth element patterns in hydrothermal fluids from Mid-ocean Ridges. Geochim Cosmochim Acta, 58: 5105–5113

    Article  Google Scholar 

  • Lavoie D, Chi G, Alpert B P, et al. 2005. Hydrothermal dolomitization in the Lower Ordovician Romaine Formation of the Anticosti Basin: Significance for hydrocarbon exploration. Bull Can Petrol Geol, 53: 454–471

    Article  Google Scholar 

  • Le Guerroué E, Allen P A, Crozzi A. 2006. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambrian Res, 146: 68–92

    Article  Google Scholar 

  • Li F Q, Wang C S, Wang C X. 2006. Tectonic characteristics and origin of Jiuquan Basin Group (in Chinese). Acta Geol Sin, 80: 181–191

    Article  Google Scholar 

  • Li H, Liu Y Q, Liang H, et al. 2012. Lithology and origin analysis of sublacustrine hydrothermal deposits characterized by analcime, sanidine, dolomite, quartz, etc. in Lucaogou Formation, Middle Permian, Santanghu Basin, Northeast Xinjiang, China (in Chinese). Acta Sediment Sin, 30: 205–218

    Google Scholar 

  • Li Z Y, Wang J B, Xiao R G, et al. 1993. Metallogenesis of continental hydrothermal sedimentation in western Yunnan Region (in Chinese). Uranium Geol, 9: 14–22

    Google Scholar 

  • Liou J G. 1971. Analcime equilibria. Lithos, 4:389–402

    Article  Google Scholar 

  • Liu C L, Franz T F, Bai Y, et al. 2004. Palaeogene environmental changes deduced from stable isotopic data from bulk carbonates in the Sanshui Basin, South China (in Chinese). Acta Sediment Sin, 22: 36–39

    Google Scholar 

  • Liu C L, Zhao Q H, Wang P X. 2001. Correlation between carbon and oxygen isotopic ratios of lacustrine carbonates and types of oil-producing paleolakes (in Chinese). Geochimica, 30: 363–367

    Google Scholar 

  • Liu Y Q, Jiao X, Li H, et al. 2012. Primary dolostone formation related to mantle-originated exhalative hydrothermal activities, Permian Yuejingou section, Santanghu area, Xinjiang, NW China (in Chinese). Sci China Earth Sci, 55: 183–192

    Article  Google Scholar 

  • López-Horgue M A, Iriarte E, Schröder S, et al. 2010. Structurally controlled hydrothermal dolomites in Albian carbonates of the Ason Valley, Basque Cantabrian Basin, Northern Spain. Mar Petrol Geol, 27: 1069–1092

    Article  Google Scholar 

  • Machel H G, Lonnee J. 2002. Hydrothermal dolomite-A product of poor definition and imagination. Sediment Geol, 152: 163–171

    Article  Google Scholar 

  • Marchig V, Gundlach H, Moller P. 1985. Some geological indicators for discrimination between digenetic and hydrothermal metalliferous sediments. Mar Geol, 50: 241–256

    Article  Google Scholar 

  • Miroshnichenko M L. 2004. Thermophilic microbial communities of deep-sea hydrothermal vents. Microbiology, 73: 1–13

    Article  Google Scholar 

  • Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and application. Sediment Geol, 90: 213–232

    Article  Google Scholar 

  • Nader F H, Garcia D, Parra T, et al. 2009. Reactive geochemical transport modeling of hydrothermal dolomite fronts: The case of Marjaba dolomite front (Jurassic, Lebanon). J Geochem Explor, 101: 74

    Article  Google Scholar 

  • Nader F H, Swennen R, Ellam R. 2004. Reflux stratabound dolostone and hydrothermal volcanism-associated dolostone: A two-stage dolomitization model (Jurassic, Lebanon). Sedimentology, 51: 339–360

    Article  Google Scholar 

  • Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314: 526–528

    Article  Google Scholar 

  • Peng N, Kuang H W, Liu Y Q. 2011. Sedimentary evolution and paleogeography of the Early Cretaceous basins from the Northern Qilian Mountains to Jiuxi areas (in Chinese). Earth Sin Front, 18: 77–87

    Google Scholar 

  • Peng R M, Zhai Y S, Wang Z G, et al. 2005. Discovery of double-peaking potassic volcanic rocks in Langshan Group of the Tanyaokou hydrothermal-sedimentary deposit, Inner Mongolia, and its indicating significance. Sci China Ser D-Earth Sci, 48: 822–833

    Article  Google Scholar 

  • Qing H, Mountjoy E W. 1992. Large-scale fluid flow in the Middle Devonian Presqu’ile Barrier, Western Canada Sedimentary Basin. Geology, 20: 903–906

    Article  Google Scholar 

  • Qing H, Mountjoy E W. 1994. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu’ile Barrier, Western Canada Sedimentary Basin. AAPG Bull, 78: 55–77

    Google Scholar 

  • Ren Z L, Liu C Y, Zhang X H, et al. 2000. Recovery and comparative research of thermal history on Jiuquan Basin Group (in Chinese). Acta Geophys Sin, 43: 635–645

    Google Scholar 

  • Rosenthal Y, Lam P, Boyle E A, et al. 1995. Authigenic cadmium enrichments in suboxic sediments: Precipitation and post depositional mobility. Earth Planet Sci Lett. 132: 99–111

    Article  Google Scholar 

  • Roy P D, Kloss W S. 2007. REE geochemistry of the recent Playa Sediments from the Thar Desert, India: An implication to Playa Sediment Provenance. Chem Erde-Geochem, 67: 55–68

    Article  Google Scholar 

  • Sass E. 1965. Dolomite-calcite relationships in seawater: Theoretical considerations and preliminary experimental results. J Sediment Petrol, 35: 339–347

    Google Scholar 

  • Spencer R J. 1987. Origin of Ca-Cl brines in Devonian Formations, Western Canada sedimentary basin. Appl Geochem, 2: 373–384

    Article  Google Scholar 

  • Su J P, Wu B X, Lei H Y, et al. 2002. The sedimentary formation and analyses for dynamic evolution of Jiuxi Cretaceous Basin, Gansu Province (in Chinese). Acta Sediment Sin, 20: 568–573

    Google Scholar 

  • Sugitani K, Yamashita F, Nagaoka T, et al. 2006. Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: Evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Res, 147: 124–147

    Article  Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sunders A D, Norry M J, eds. Mamatism in the Ocean Basin. London Spec Publ, 42: 313–345

    Google Scholar 

  • Tarasov V G, Gebruk A V, Mironov A N, et al. 2005. Deep-sea and shal low-water hydrothermal vent communities: Two different phenomena. Chem Geol, 224:5–39

    Article  Google Scholar 

  • Taylor R, Mclenan S M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell. 57–72

    Google Scholar 

  • Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 232: 12–32

    Article  Google Scholar 

  • Tritlla J, Cardellach E. 2001. Origin of vein hydrothermal carbonates in Triassic Limestones of the Espadan Ranges Iberian Chain, E Spain. Chem Geol, 172: 291–305

    Article  Google Scholar 

  • Tu G Z. 1988. Discussion on geological problems concerning gold ore depositions (in Chinese). Contrib Geol Mineral Resour Res, 3: 1–8

    Google Scholar 

  • Veizer J, Ala D, Azmy K B, et al. 1999. 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88

    Article  Google Scholar 

  • Wang X F, Zhang Z C, Guo Z J, et al. 2004. Geochemical characteristics and tectonic significance of the Early Cretaceous volcanic rocks in the southern margin of Jiuxi Basin (in Chinese). Geol J China Univ, 10: 570–577

    Google Scholar 

  • Wang Y H, Zhou S X, Zhang X L. 1993. Chinese Lacustrine Carbonate (in Chinese). Xuzhou: China University of Mining and Technology Press. 1–147

    Google Scholar 

  • Wen H G. 2008. Geochemical characteristics and genesis of lacustrine “White Smoke Type” hydrothermal sedimentary rock in Qingxi Sag, Jiuquan Basin (in Chinese). Doctoral Dissertation. Chengdu: Chengdu University of Technology. 1–165

    Google Scholar 

  • Wen H G, Zheng R C, Fan M T, et al. 2010. Characteristics of fluid inclusions in the lacustrine hydrothermal sedimentary rock from the Xiagou Formation, Lower Cretaceous in Qingxi Sag, Jiuquan Basin (in Chinese). Acta Geol Sin, 84: 106–115

    Google Scholar 

  • Wright D T. 1999. The role of Sulphate reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol, 126: 147–157

    Article  Google Scholar 

  • Wright W R, Johnson A W, Sheltonb K L, et a1. 2000. Fluid migration and rock interactions during dolomitisation of the Dinantian Irish Midlands and Dublin Basin. J Geochem Explor, 69–70: 159–164

    Article  Google Scholar 

  • Xiao R G, Yang Z F, Yang W D, et al. 1994. Hydrothermal minerlizing process (in Chinese). Earth Sin Front, 1: 140–147

    Google Scholar 

  • Yan D T, Chen D Z, Wang Q C, et al. 2009. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform, South China. Sci China Ser D-Earth Sci. 52: 38–54

    Article  Google Scholar 

  • Yang J S, Meng F C, Zhang J X, et al. 2001. The shoshonitic volcanic rocks at Hongliuxia: Pulses of the Altyn Tagh fault in Cretaceous. Sci China Ser D-Earth Sci, 44: 94–102

    Article  Google Scholar 

  • Yi H S, Lin J H, Zhao X X, et al. 2008. Geochemistry of rare earth elements and origin of positive europium Anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe Basin of Tibetan Plateau (in Chinese). Acta Sediment Sin, 26: 1–10

    Google Scholar 

  • Ying F X. 1993. Authigenic mineral of continental clastic rock in China (in Chinese). In: Chinese Oil and Gas Reservoir Research Papers. Beijing: Petroleum Industry Press. 1–19

    Google Scholar 

  • Zhai Y S. 2004. Earth system sciences and the study on metallogenesis (in Chinese). Earth Sin Front, 11: 1–10

    Google Scholar 

  • Zhang W Z, Yang H, Xie L Q, et al. 2010. Lake-bottom hydrothermal activities and their influences on the high-quality source rock development: A case from Chang 7 Source Rocks in Ordos Basin (in Chinese). Petrol Explor Dev, 37: 424–429

    Article  Google Scholar 

  • Zhang X B. 1993. Study on the origin of the dolostone intercalcated in the black shales in Middle Permian Lucaogou Formation eastern part of southern margin of Junggar Basin (in Chinese). Acta Sediment Sin, 11: 132–138

    Google Scholar 

  • Zhang X F, Hu W X, Zhang J T. 2006. Critical problems for dolomite formation and dolomitization models (in Chinese). Geol Sci Techn Inf, 25: 32–40

    Google Scholar 

  • Zheng R C, Wang C S, Zhu L D, et al. 2003. Discovery of the first example of “White Smoke Type” of exhalative rock (Hydrothermal Sedimentary Dolostone) in Jiuxi Basin and its significance (in Chinese). J Chengdu Univ Techn (Sci Technol Ed), 30: 1–8

    Google Scholar 

  • Zheng R C, Wen H G, Fan M T, et al. 2006. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin (in Chinese). Acta Petrol Sin, 22: 3027–3038

    Google Scholar 

  • Zhou C M, Zhang J M, Li G X, et al. 1997. Carbon and oxygen isotopic record of the Early Cambrina from the Xiaotan Section, Yunnan, South China (in Chinese). Geol Sci, 32: 201–211

    Google Scholar 

  • Zhou Y Z, He J G, Yang Z J, et al. 2004. Hydrothermally sedimentary formations and related Minera`lization in South China (in Chinese). Earth Sin Front, 11: 373–377

    Google Scholar 

  • Zhu D Y, Jin Z J, Hu W X. 2006. Hydrothermal alteration dolomite reservoir in Tazhong area (in Chinese). Acta Petrol Sin, 30: 698–703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaGuo Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, H., Zheng, R., Qing, H. et al. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau. Sci. China Earth Sci. 56, 2080–2093 (2013). https://doi.org/10.1007/s11430-013-4654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4654-x

Keywords

Navigation