Skip to main content
Log in

The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction

  • Progress
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

As a relatively stable craton block in the earth system, the petroliferous basin is influenced by the evolution of the earth system from the early development environment of source rocks, hydrocarbon formation, and reservoir dissolution to hydrocarbon accumulation or destruction. As a link between the internal and external factors of the basin, deep fluids run through the whole process of hydrocarbon formation and accumulation through organic-inorganic interaction. The nutrients carried by deep fluids promote the bloom of hydrocarbon-generating organisms and extra addition of carbon and hydrogen source, which are beneficial to the development of high-quality source rock and enhancement of the hydrocarbon generation potential. The energy carried by the deep fluid promotes the early maturation of the source rock and facilitates the hydrocarbon generation by activation and hydrogenation in high-mature hydrocarbon sources. The dissolution alteration of carbonate rocks and clastic reservoirs by CO2-rich deep fluids improves the deep reservoir space, thus extending the oil and gas reservoir space into greater depth. The extraction of deeply retained crude oil by deep supercritical CO2 and the displacement of CH4 in shale have both improved the hydrocarbon fluidity in deep and tight reservoirs. Simultaneously, the energy and material carried by deep fluids (C, H, and catalytic substances) not only induce inorganic CH4 formation by Fischer-Tropsch (F-T) synthesis and “hydrothermal petroleum” generation from organic matter by thermal activity but also cause the hydrothermal alteration of crude oil from organic sources. Therefore, from the perspective of the interaction of the earth’s sphere, deep fluids not only input a significant amount of exogenous C and H into sedimentary basins but also improve the reservoir space for oil and gas, as well as their enrichment and accumulation efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrajano T A, Sturchio N C, Bohlke J K, Lyon G L, Poreda R J, Stevens C M. 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chem Geol, 71: 211–222

    Google Scholar 

  • Akinlua A, Torto N, Ajayi T R. 2008. Supercritical fluid extraction of aliphatic hydrocarbons from Niger Delta sedimentary rock. J Supercrit Fluid, 45: 57–63

    Google Scholar 

  • Al-Aasm I. 2003. Origin and characterization of hydrothermal dolomite in the Western Canada sedimentary basin. J Geochem Explor, 78-79: 9–15

    Google Scholar 

  • Alemu B L, Aagaard P, Munz I A, Skurtveit E. 2011. Caprock interaction with CO2: A laboratory study of reactivity of shale with supercritical CO2 and brine. Appl Geochem, 26: 1975–1989

    Google Scholar 

  • Algeo T J, Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chem Geol, 324-325: 6–18

    Google Scholar 

  • Anders E, Hayatsu R, Studier M H. 1973. Organic compounds in meteorites: They may have formed in the solar nebula, by catalytic reactions of carbon monoxide, hydrogen, and ammonia. Science, 182: 781–790

    Google Scholar 

  • Anderson R B, Köllbel H, Rálek M. 1984. The Fischer-Tropsch Synthesis. New York: Academic Press. 1–30

    Google Scholar 

  • Armitage P J, Faulkner D R, Worden R H, Aplin A C, Butcher A R, Iliffe J. 2011. Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria. J Geophys Res, 116: B12208

    Google Scholar 

  • Bauld J. 1984. Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia. In: Cohen Y, Castenholz R W, Halvorson H O, eds. Microbial Mats: Stromatolites. New York: Alan Liss. 39–58

    Google Scholar 

  • Bertier P, Swennen R, Laenen B, Lagrou D, Dreesen R. 2006. Experimental identification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium). J Geochem Explor, 89: 10–14

    Google Scholar 

  • Bishop A N, Love G D, McAulay A D, Snape C E, Farrimond P. 1998. Release of kerogen-bound hopanoids by hydropyrolysis. Org Geochem, 29: 989–1001

    Google Scholar 

  • Bohdanowic C. 1934. Natural gas occurrence in Russia (U.S.S.R). AAPG Bull, 18: 746–759

    Google Scholar 

  • Bondar E, Koel M. 1998. Application of supercritical fluid extraction to organic geochemical studies of oil shales. Fuel, 77: 211–213

    Google Scholar 

  • Browning T J, Bouman H A, Henderson G M, Mather T A, Pyle D M, Schlosser C, Woodward E M S, Moore C M. 2014. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys Res Lett, 41: 2851–2857

    Google Scholar 

  • Burne R V, Moore L S. 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2: 241–254

    Google Scholar 

  • Cai Y W, Wang H J, Wang X M, He K, Zhang S C, Wu C D. 2017. Formation conditions and main controlling factors of uranium in marine source rocks (in Chinese). Adv Earth Sci, 32: 199–208

    Google Scholar 

  • Che Y, Jiang H C, Mu X, Li J L. 2001. Gas reservoir type and reservoirforming rule of Huagou gas field (in Chinese). Petrol Geol Recov Eff, 8: 32–34

    Google Scholar 

  • Clifton C G, Walters C C, Simoneit B R T. 1990. Hydrothermal petroleums from Yellowstone National Park, Wyoming, U.S.A.. Appl Geochem, 5: 169–191

    Google Scholar 

  • Dai J, Yang S, Chen H, Shen X. 2005. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Org Geochem, 36: 1664–1688

    Google Scholar 

  • Dasgupta R, Hirschmann M M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85

    Google Scholar 

  • Davies G R, Smith Jr. L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull, 90: 1641–1690

    Google Scholar 

  • Dehghanpour H, Zubair H A, Chhabra A, Ullah A. 2012. Liquid intake of organic shales. Energy Fuels, 26: 5750–5758

    Google Scholar 

  • Demaison G J, Moore G T. 1980. Anoxic environments and oil source bed genesis. Org Geochem, 2: 9–31

    Google Scholar 

  • Dick G J, Anantharaman K, Baker B J, Li M, Reed D C, Sheik C S. 2013. The microbiology of deep-sea hydrothermal vent plumes: Ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol, 4: 124

    Google Scholar 

  • Dick G J, Tebo B M. 2010. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ Microbiol, 12: 1334–1347

    Google Scholar 

  • Didyk B M, Simoneit B R T. 1990. Petroleum characteristics of the oil in a Guaymas Basin hydrothermal chimney. Appl Geochem, 5: 29–40

    Google Scholar 

  • Duan Z, Li D. 2008. Coupled phase and aqueous species equilibrium of the H2O–CO2–NaCl–CaCO3 system from 0 to 250°C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. Geochim Cosmochim Acta, 72: 5128–5145

    Google Scholar 

  • Etiope G. 2017. Abiotic methane in continental serpentinization sites: An overview. Procedia Earth Planet Sci, 17: 9–12

    Google Scholar 

  • Fang Y, Liao Y, Wu L, Geng A. 2014. The origin of solid bitumen in the Honghuayuan Formation (O1h) of the Majiang paleo-reservoir—Evidence from catalytic hydropyrolysates. Org Geochem, 68: 107–117

    Google Scholar 

  • Feng Z H, Huo Q L, Wang X. 2001. A study of helium reservoir formation characteristic in the north part of Songliao Basin (in Chinese). Nat Gas Ind, 21: 29–30

    Google Scholar 

  • Fitzsimmons J N, John S G, Marsay C M, Hoffman C L, Nicholas S L, Toner B M, German C R, Sherrell R M. 2017. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat Geosci, 10: 195–201

    Google Scholar 

  • Frezzotti M L, Huizenga J M, Compagnoni R, Selverstone J. 2014. Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. Geochim Cosmochim Acta, 143: 68–86

    Google Scholar 

  • Frogner P, Reynir Gíslason S, Óskarsson N. 2001. Fertilizing potential of volcanic ash in ocean surface water. Geology, 29: 487–490

    Google Scholar 

  • Frost D J, McCammon C A. 2008. The redox state of Earth’s mantle. Annu Rev Earth Planet Sci, 36: 389–420

    Google Scholar 

  • Fu Q, Sherwood Lollar B, Horita J, Lacrampe-Couloume G, Seyfried Jr. W E. 2007. Abiotic formation of hydrocarbons under hydrothermal conditions: Constraints from chemical and isotope data. Geochim Cosmochim Acta, 71: 1982–1998

    Google Scholar 

  • Gao Y, Liu L, Hu W. 2009. Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China. Appl Geochem, 24: 1724–1738

    Google Scholar 

  • Gao Y Q, Liu L, Yang H D, You L, Liu N. 2007. Characteristics and origin of dawsonite in Gudian carbon dioxide gas field of Songliao Basin (in Chinese). Acta Petrol Sin, 28: 62–67

    Google Scholar 

  • Goebel E D, Coveney R M J, Angino E E, Zeller E J. 1983. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas. AAPG Bull, 67–68: 1324

    Google Scholar 

  • Pagès A, Grice K, Ertefai T, Skrzypek G, Jahnert R, Greenwood P. 2014. Organic geochemical studies of modern microbial mats from Shark Bay: Part I: Influence of depth and salinity on lipid biomarkers and their isotopic signatures. Geobiology, 12: 469–487

    Google Scholar 

  • Han C R. 2001. Technic and Engineering of Hydrocracking (in Chinese). Beijing: China Petrochemical Press. 224–226

    Google Scholar 

  • Hawkes H E. 1972. Free hydrogen in genesis of petroleum. AAPG Bull, 56: 2268–2270

    Google Scholar 

  • He Z L, Wei X C, Qian Y X, Bao Z Y, Fan M, Jiao C L, Peng S T, Chen D. 2011. Forming mechanism and distribution prediction of quality marine carbonate reservoirs (in Chinese). Oil Gas Geol, 32: 489–498

    Google Scholar 

  • Hecht L, Freiberger R, Gilg H A, Grundmann G, Kostitsyn Y A. 1999. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem Geol, 155: 115–130

    Google Scholar 

  • Heller R, Zoback M. 2014. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J Unconv Oil Gas Resour, 8: 14–24

    Google Scholar 

  • Hoffmann L J, Breitbarth E, Ardelan M V, Duggen S, Olgun N, Hassellöv M, Wängberg S Å. 2012. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi. Mar Chem, 132-133: 28–33

    Google Scholar 

  • Hooper E C D. 1991. Fluid migration along growth faults in compacting sediments. J Pet Geol, 14: 161–180

    Google Scholar 

  • Horita J, Berndt M E. 1999. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science, 285: 1055–1057

    Google Scholar 

  • Hu W X. 2016. Origin and indicators of deep-seated fluids in sedimentary basins (in Chinese). Bull Mineral Petrol Geochem, 35: 817–826

    Google Scholar 

  • Hu W X, Chen Q, Wang X L, Cao J. 2010. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs (in Chinese). Oil Gas Geol, 31: 810–818

    Google Scholar 

  • Hu W X, Zhu J Q, Wang X L, You X L, He K. 2014. Characteristics,origin and geological implications of the Cambrian microbial dolomite in Keping area, Tarim Basin (in Chinese). Oil Gas Geol, 35: 860–869

    Google Scholar 

  • Huang B, Tian H, Huang H, Yang J, Xiao X, Li L. 2015. Origin and accumulation of CO2 and its natural displacement of oils in the continental basins, northern South China Sea. AAPG Bull, 99: 1349–1369

    Google Scholar 

  • Huang B, Xiao X, Zhu W. 2004. Geochemistry, origin, and accumulation of CO2 in natural gases of the Yinggehai Basin, offshore South China Sea. AAPG Bull, 88: 1277–1293

    Google Scholar 

  • Hurley N F, Budros R. 1990. Albion-Scipio and Stoney Point Fields-USA Michigan Basin. AAPG Special Volumes. 1–37

    Google Scholar 

  • Hyatt J A. 1984. Liquid and supercritical carbon dioxide as organic solvents. J Org Chem, 49: 5097–5101

    Google Scholar 

  • Jacquemyn C, El Desouky H, Hunt D, Casini G, Swennen R. 2014. Dolomitization of the Latemar platform: Fluid flow and dolomite evolution. Mar Pet Geol, 55: 43–67

    Google Scholar 

  • Jeffrey A W A, Kaplan I R. 1988. Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan Ring, Sweden. Chem Geol, 71: 237–255

    Google Scholar 

  • Jiang Y Q, Tao Y Z, Gu Y B, Qiang Z T, Jiang N, Lin G, Jiang C. 2016. Hydrothermal dolomitization in Sinian Dengying Formation, Gaoshiti- Moxi area, Sichuan Basin, SW China (in Chinese). Petrol Explor Develop, 43: 1–10

    Google Scholar 

  • Jiao N Z. 2012. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump (in Chinese). Sci Sin Terr, 42: 1473–1486

    Google Scholar 

  • Jin Z, Yuan Y, Sun D, Liu Q, Li S. 2014. Models for dynamic evaluation of mudstone/shale cap rocks and their applications in the Lower Paleozoic sequences, Sichuan Basin, SW China. Mar Pet Geol, 49: 121–128

    Google Scholar 

  • Jin Z J, Zhang L P, Yang L, Hu W X. 2004. A preliminary study of mantlederived fluids and their effects on oil/gas generation in sedimentary basins. J Pet Sci Eng, 41: 45–55

    Google Scholar 

  • Jin Z J, Hu W X, Zhang L P, Tao M X. 2007. Deep Fluid Activities and Their Effectiveness on Hydrocarbon Generation and Accumulation (in Chinese). Beijing: Science Press

    Google Scholar 

  • Jin Z J, Zhu D Y, Hu W X, Zhang X F, Wang Y, Yan X B. 2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin (in Chinese). Acta Geol Sin, 80: 245–253

    Google Scholar 

  • Jones R W, Edison T A. 1978. Microscopic observations of kerogen related to geochemical parameters with emphasis on thermal maturation. Pacific Section SEPM. 1–12

    Google Scholar 

  • Jung J W, Espinoza D N, Santamarina J C. 2010. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sediments. J Geophys Res, 115: B10102

    Google Scholar 

  • Kerrick D M, Connolly J A D. 1998. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology, 26: 375–378

    Google Scholar 

  • Kvenvolden K A, Rapp J B, Hostettler F D, Morton J L, King J D, Claypool G E. 1986. Petroleum associated with polymetallic sulfide in sediment from Gorda Ridge. Science, 234: 1231–1234

    Google Scholar 

  • Lancet M S, Anders E. 1970. Carbon isotope fractionation in the Fischer- Tropsch synthesis and in meteorites. Science, 170: 980–982

    Google Scholar 

  • Lee C T A, Jiang H, Ronay E, Minisini D, Stiles J, Neal M. 2018. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous. Sci Rep, 8: 4197

    Google Scholar 

  • Lewan M. 1993. Laboratory simulation of petroleum formation: Hydrous pyrolysis. In: Engel M H, Macko S A, eds. Organic Geochemistry-Principle and Applications. New York: Plenum Press. 419–422

    Google Scholar 

  • Lewan M D, Winters J C, McDonald J H. 1979. Generation of oil-like pyrolyzates from organic-rich shales. Science, 203: 897–899

    Google Scholar 

  • Li J, Cui J, Yang Q, Cui G, Wei B, Wu Z, Wang Y, Zhou H. 2017. Oxidative weathering and microbial diversity of an inactive seafloor hydrothermal sulfide chimney. Front Microbiol, 8: 1378

    Google Scholar 

  • Li S G. 2015. Tracing deep carbon recycling by Mg isotopes (in Chinese). Earth Sci Front, 22: 143–159

    Google Scholar 

  • Liu G Y, Zhang L P, Jin Z J, 2005. Primary study on the effects of deepsourced fluid’s movement on hydrocarbon migration (in Chinese). Petrol Geol Exper, 27: 269–275

    Google Scholar 

  • Liu L, Gao Y Q, Qu X Y, Meng Q A, Gao F H, Ren Y G, Zhu D F. 2006. Petrology and carbon-oxygen isotope of inorganic CO2 gas reservoir in Wuerxun depression, Hailaer basin (in Chinese). Acta Petrol Sin, 22: 2229–2236

    Google Scholar 

  • Liao Y, Fang Y, Wu L, Geng A, Hsu C S. 2012. The characteristics of the biomarkers and δ 13C of n-alkanes released from thermally altered solid bitumens at various maturities by catalytic hydropyrolysis. Org Geochem, 46: 56–65

    Google Scholar 

  • Liu N, Liu L, Qu X, Yang H, Wang L, Zhao S. 2011. Genesis of authigene carbonate minerals in the Upper Cretaceous reservoir, Honggang Anticline, Songliao Basin: A natural analog for mineral trapping of natural CO2 storage. Sediment Geol, 237: 166–178

    Google Scholar 

  • Liu Q, Dai J, Jin Z, Li J, Wu X, Meng Q, Yang C, Zhou Q, Feng Z, Zhu D. 2016. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes? J Asian Earth Sci, 115: 285–297

    Google Scholar 

  • Liu Q, Liu W, Dai J. 2007. Characterization of pyrolysates from maceral components of Tarim coals in closed system experiments and implications to natural gas generation. Org Geochem, 38: 921–934

    Google Scholar 

  • Liu Q, Zhu D, Jin Z, Meng Q, Wu X, Yu H. 2017. Effects of deep CO2 on petroleum and thermal alteration: The case of the Huangqiao oil and gas field. Chem Geol, 469: 214–229

    Google Scholar 

  • Liu S, Huang W, Jansa L F, Wang G, Song G, Zhang C, Sun W, Ma W. 2014. Hydrothermal dolomite in the Upper Sinian (Upper Proterozoic) Dengying Formation, East Sichuan Basin, China. Acta Geol Sin-Engl Ed, 88: 1466–1487

    Google Scholar 

  • Liu S A, Wu H, Shen S, Jiang G, Zhang S, Lv Y, Zhang H, Li S. 2017. Zinc isotope evidence for intensive magmatism immediately before the end- Permian mass extinction. Geology, 45: 343–346

    Google Scholar 

  • Love G D, Snape C E, Carr A D, Houghton R C. 1995. Release of covalently- bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Org Geochem, 23: 981–986

    Google Scholar 

  • Lu J, Wilkinson M, Haszeldine R S, Fallick A E. 2009. Long-term performance of a mudrock seal in natural CO2 storage. Geology, 37: 35–38

    Google Scholar 

  • Luo P, Wang S, Li P W, Song J M, Jin T F, Wang G Q, Yang S S. 2013. Review and prospectives of microbial carbonate reservoirs (in Chinese). Act Sediment Sin, 31: 807–823

    Google Scholar 

  • Luo Y R. 2004. Databook of Chemical Bond Energy (in Chinese). Beijing: Science Press. 1–396

    Google Scholar 

  • Ma A L, Li Y Z, Zhang X K, Zhang Z M. 2015. Carbon dioxide origin, alkane gas geochemical characteristics and pool-forming model of presalt J oilfield in offshore Santos basin, Brazil (in Chinese). Chin Offshore Oil Gas, 27: 13–20

    Google Scholar 

  • Makhanov K, Habibi A, Dehghanpour H, Kuru E. 2014. Liquid uptake of gas shales: A workflow to estimate water loss during shut-in periods after fracturing operations. J Unconv Oil Gas Resour, 7: 22–32

    Google Scholar 

  • Martin J H, Fitzwater S E. 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331: 341–343

    Google Scholar 

  • Marty B, Gunnlaugsson E, Jambon A, Oskarsson N, Ozima M, Pineau F, Torssander P. 1991. Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chem Geol, 91: 207–225

    Google Scholar 

  • McCollom T M, Seewald J S, Lollar B S, Lacrampe-Couloume G. 2006. Isotopic signatures of abiotic organic synthesis under geologic conditions. Geochim Cosmochim Acta, 70: A0407

    Google Scholar 

  • Meng Q, Sun Y, Tong J, Fu Q, Zhu J, Zhu D, Jin Z. 2015. Distribution and geochemical characteristics of hydrogen in natural gas from the Jiyang Depression, Eastern China. Acta Geol Sin-Engl Ed, 89: 1616–1624

    Google Scholar 

  • Meng Q Q, Tao C, Zhu D Y, Jin Z J, Wang Q, Zheng L J. 2011. Primary study on relatively preconcentration of trace hydrogen in natural gas (in Chinese). Petrol Geol Exper, 33: 314–316

    Google Scholar 

  • Michaelis W, Jenisch A, Richnow H H. 1990. Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Appl Geochem, 5: 103–114

    Google Scholar 

  • Middag R, de Baar H J W, Laan P, Cai P H, van Ooijen J C. 2011. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 58: 2661–2677

    Google Scholar 

  • Middleton R S, Carey J W, Currier R P, Hyman J D, Kang Q, Karra S, Jiménez-Martínez J, Porter M L, Viswanathan H S. 2015. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Appl Energy, 147: 500–509

    Google Scholar 

  • Milesi V, Prinzhofer A, Guyot F, Benedetti M, Rodrigues R. 2016. Contribution of siderite-water interaction for the unconventional generation of hydrocarbon gases in the Solimões basin, north-west Brazil. Mar Pet Geol, 71: 168–182

    Google Scholar 

  • Monin J C, Barth D, Perrut M, Espitalié M, Durand B. 1988. Extraction of hydrocarbons from sedimentary rocks by supercritical carbon dioxide. Org Geochem, 13: 1079–1086

    Google Scholar 

  • Moore C M, Mills M M, Arrigo K R, Berman-Frank I, Bopp L, Boyd P W, Galbraith E D, Geider R J, Guieu C, Jaccard S L, Jickells T D, La Roche J, Lenton T M, Mahowald N M, Marañón E, Marinov I, Moore J K, Nakatsuka T, Oschlies A, Saito M A, Thingstad T F, Tsuda A, Ulloa O. 2013. Processes and patterns of oceanic nutrient limitation. Nat Geosci, 6: 701–710

    Google Scholar 

  • Moore J, Adams M, Allis R, Lutz S, Rauzi S. 2005. Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville–St. Johns Field, Arizona, and New Mexico, U.S.A.. Chem Geol, 217: 365–385

    Google Scholar 

  • Morel F M M, Milligan A J, Saito M A. 2003. Marine bioinorganic chemistry: The role of trace metals in the ocean cycles of major nutrients. Treat Geochem, 6: 113–143

    Google Scholar 

  • Neal C, Stanger G. 1983. Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci Lett, 66: 315–320

    Google Scholar 

  • Newell K D, Doveton J H, Merriam D F, Lollar B S, Waggoner W M, Magnuson L M. 2007. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in Northeastern Kansas. Nat Resour Res, 16: 277–292

    Google Scholar 

  • Nishijima A, Kameoka T, Sato T, Matsubayashi N, Nishimura Y. 1998. Catalyst design and development for upgrading aromatic hydrocarbons. Catal Today, 45: 261–269

    Google Scholar 

  • Nygård R, Gutierrez M, Bratli R K, Høeg K. 2006. Brittle-ductile transition, shear failure and leakage in shales and mudrocks. Mar Pet Geol, 23: 201–212

    Google Scholar 

  • Oelkers E H, Cole D R. 2008. Carbon dioxide sequestration a solution to a global problem. Elements, 4: 305–310

    Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R. 2001. Production of refractory dissolved organic matter by bacteria. Science, 292: 917–920

    Google Scholar 

  • Olgun N i, Duggen S, Andronico D, Kutterolf S, Croot P L, Giammanco S, Censi P, Randazzo L. 2013. Possible impacts of volcanic ash emissions of Mount Etna on the primary productivity in the oligotrophic Mediterranean Sea: Results from nutrient-release experiments in seawater. Mar Chem, 152: 32–42

    Google Scholar 

  • Pedersen R B, Rapp H T, Thorseth I H, Lilley M D, Barriga F J A S, Baumberger T, Flesland K, Fonseca R, Früh-Green G L, Jorgensen S L. 2010. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun, 1: 126

    Google Scholar 

  • Peter J M, Peltonen P, Scott S D, Simoneit B R T, Kawka O E. 1991. 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: Implications for oil generation, expulsion, and migration. Geology, 19: 253–256

    Google Scholar 

  • Price L C, Wenger L M. 1992. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Org Geochem, 19: 141–159

    Google Scholar 

  • Qian Y X, Feng, J F, He Z L, Zhang, K Y, Jin T, Dong S F, You D H, Zhang Y D. 2017. Applications of petrography and isotope analysis of microdrill samples to the study of genesis of grape-like dolomite of the Dengying Formation in the Sichuan Basin (in Chinese). Oil Gas Geol, 38: 665–676

    Google Scholar 

  • Qing H, Bosence D W J, Rose E P F. 2001. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48: 153–163

    Google Scholar 

  • Reeves E P, Seewald J S, Sylva S P. 2012. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions. Geochim Cosmochim Acta, 77: 582–599

    Google Scholar 

  • Rona P A, Klinkhammer G, Nelsen T A, Trefry J H, Elderfield H. 1986. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature, 321: 33–37

    Google Scholar 

  • Saxby J D, Riley K W. 1984. Petroleum generation by laboratory-scale pyrolysis over six years simulating conditions in a subsiding basin. Nature, 308: 177–179

    Google Scholar 

  • Schimmelmann A, Lewan M D, Wintsch R P. 1999. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochim Cosmochim Acta, 63: 3751–3766

    Google Scholar 

  • Schimmelmann A, Mastalerz M, Gao L, Sauer P E, Topalov K. 2009. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating. Geochim Cosmochim Acta, 73: 6264–6281

    Google Scholar 

  • Shangguan Z G, Huo W G. 2002. dD values of escaped H2 from hot springs at the Tengchong Rehai geothermal area and its origin. Chin Sci Bull, 47: 148–150

    Google Scholar 

  • Shen Y, Farquhar J, Zhang H, Masterson A, Zhang T, Wing B A. 2011. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction. Nat Commun, 2: 210

    Google Scholar 

  • Sherwood Lollar B, Onstott T C, Lacrampe-Couloume G, Ballentine C J. 2014. The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516: 379–382

    Google Scholar 

  • Shiraki R, Dunn T L. 2000. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl Geochem, 15: 265–279

    Google Scholar 

  • Shu X H, Zhang J T, Li G R, Long S X, Wu S X, Li H T. 2012. Characteristics and genesis of hydrothermal dolomites of Qixia and Maokou Formations in northern Sichuan Basin (in Chinese). Oil Gas Geol, 33: 442–448

    Google Scholar 

  • Shuai Y H, Zhang S C, Su A G, Wang H T, Cai B Y, Wang H. 2010. Geochemical evidence for strong ongoing methanogenesis in Sanhu region of Qaidam Basin. Sci China Ser D-Earth Sci, 53: 84–90

    Google Scholar 

  • Simoneit B R T. 1984. Hydrothermal effects on organic matter—High vs low temperature components. Org Geochem, 6: 857–864

    Google Scholar 

  • Simoneit B R T. 1990. Selected papers from the symposium: Organic matter in hydrothermal systems-maturation, migration and biogeochemistry at the third chemical congress of North America and the 195th American chemical society national meeting. Appl Geochem, 5: 1–15

    Google Scholar 

  • Simoneit B R T, Lonsdale P F. 1982. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature, 295: 198–202

    Google Scholar 

  • Simoneit B R T, Aboul-Kassim T A T, Tiercelin J J. 2000. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift. Appl Geochem, 15: 355–368

    Google Scholar 

  • Simoneit B R T, Kvenvolden K A. 1994. Comparison of 14C ages of hydrothermal petroleums. Org Geochem, 21: 525–529

    Google Scholar 

  • Simoneit B R T, Lein A Y, Peresypkin V I, Osipov G A. 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N). Geochim Cosmochim Acta, 68: 2275–2294

    Google Scholar 

  • Slowakiewicz M, Tucker M E, Pancost R D, Perri E, Mawson M. 2013. Upper Permian (Zechstein) microbialites: Supratidal through deep subtidal deposition, source rock, and reservoir potential. AAPG Bull, 97: 1921–1936

    Google Scholar 

  • Song J M, Liu S G, Li Z W, Luo P, Yang D, Sun W, Peng H L, Yu Y Q. 2017. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China (in Chinese). Oil Gas Geol, 38: 741–752

    Google Scholar 

  • Suda K, Ueno Y, Yoshizaki M, Nakamura H, Kurokawa K, Nishiyama E, Yoshino K, Hongoh Y, Kawachi K, Omori S, Yamada K, Yoshida N, Maruyama S. 2014. Origin of methane in serpentinite-hosted hydrothermal systems: The CH4–H2–H2O hydrogen isotope systematics of the Hakuba Happo hot spring. Earth Planet Sci Lett, 386: 112–125

    Google Scholar 

  • Thayer T P. 1966. Serpentinization considered as a constant-volume metasomatic process. Miner Soc Amer, 51: 685–710

    Google Scholar 

  • Tissot B T, Durand B, Espitalie J, Combaz A. 1974. Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull, 58: 499–506

    Google Scholar 

  • Van Cappellen P, Ingall E D. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9: 677–692

    Google Scholar 

  • Vasconcelos C, McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res, 67: 378–390

    Google Scholar 

  • Von Damm K L. 1990. Seafloor hydrothermal activity: Black smoker chemistry and chimneys. Annu Rev Earth Planet Sci, 18: 173–204

    Google Scholar 

  • Wang S Y, Li X F, 1999. Study on the geochemical characteristics of natural gas and gas-bearing system in the Sinian strata in Weiyuan and Ziyang area (in Chinese). Nat Gas Geosci, 10: 63–69

    Google Scholar 

  • Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. 2017. Directly converting CO2 into a gasoline fuel. Nat Commun, 8: 15174

    Google Scholar 

  • Weitkamp J, Raichle A, Traa Y. 2001. Novel zeolite catalysis to create value from surplus aromatics: Preparation of C2+-n-alkanes, a highquality synthetic steamcracker feedstock. Appl Catal A-General, 222: 277–297

    Google Scholar 

  • Welhan J A, Craig H. 1979. Methane and hydrogen in East Pacific rise hydrothermal fluids. Geophys Res Lett, 6: 829–831

    Google Scholar 

  • Wilkinson M, Haszeldine R S, Fallick A E, Odling N, Stoker S J, Gatliff R W. 2009. CO2-mineral reaction in a natural analogue for CO2 storage— Implications for modeling. J Sediment Res, 79: 486–494

    Google Scholar 

  • Woolnough W G. 1934. Natural gas in Australia and New Guinea. AAPG Bull, 18: 226–242

    Google Scholar 

  • Worden R H. 2006. Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Mar Pet Geol, 23: 61–77

    Google Scholar 

  • Wu L L, Liao Y H, Fang Y X, Geng A S. 2013. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities. Chin Sci Bull, 58: 373–383

    Google Scholar 

  • Xu Y C, Shen P, Li Y C, 1989. The oldest gas pool of China—Weiyuan Sinian gas pool, Sichuan province (in Chinese). Acta Sediment Sin, 7: 3–14

    Google Scholar 

  • Yamanaka T, Ishibashi J, Hashimoto J. 2000. Organic Geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan. Org Geochem, 31: 1117–1132

    Google Scholar 

  • Yang C Q, Yao J X, 2004. Modes of CO2 gas reservoir formation in Sanshui Basin (in Chinese). Nat Gas Ind, 24: 36–39

    Google Scholar 

  • Zhang G, Zhang X, Hu D, Li D, Algeo T J, Farquhar J, Henderson C M, Qin L, Shen M, Shen D, Schoepfer S D, Chen K, Shen Y. 2017. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Proc Natl Acad Sci USA, 114: 1806–1810

    Google Scholar 

  • Zhang L F, Tao R B, Zhu J J, 2017. Some problems of deep carbon cycle in subduction zone (in Chinese). Bull Mineral Petrol Geochem, 36: 185–196

    Google Scholar 

  • Zhang Q X, Li Y L, Hu, Z L, Zhang Q M. 1989. The deep thermal origin and water-facies migration of petroleum in the Meishan Formatoin in the Yinggehai Basin (in Chinese). Chin Offshore Oil Gas, 3: 25–33

    Google Scholar 

  • Zhang S, He K, Hu G, Mi J, Ma Q, Liu K, Tang Y. 2018. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases. Mar Pet Geol, 89: 68–82

    Google Scholar 

  • Zhang S, Mi J, He K. 2013. Synthesis of hydrocarbon gases from four different carbon sources and hydrogen gas using a gold-tube system by Fischer-Tropsch method. Chem Geol, 349-350: 27–35

    Google Scholar 

  • Zhang Z S, 1987. The helium resource and its development and protection in China (in Chinese). Resour Develop Mark, 3: 28–31

    Google Scholar 

  • Zhao F Y, Jiang S G, Li S Z, Cao W, Wang G, Zhang H X, Gao S. 2017. Correlation of inorganic CO2 reservoirs in East China to subduction of (Paleo-) Pacific Plate (in Chinese). Earth Sci Front, 24: 370–384

    Google Scholar 

  • Zhao W Z, Shen A J, Zhou J G, Wang X F, Lu J M. 2014. Types, characteristics, origin and exploration significance of reef-shoal reservoirs: A case study of Tarim Basin, NW China and Sichuan Basin, SW China (in Chinese). Petrol Explor Develop, 41: 257–267

    Google Scholar 

  • Zhong L, Cantrell K, Mitroshkov A, Shewell J. 2014. Mobilization and transport of organic compounds from reservoir rock and caprock in geological carbon sequestration sites. Environ Earth Sci, 71: 4261–4272

    Google Scholar 

  • Zhu D Y, Jin Z J, Hu W X. 2010. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin. Sci China Earth Sci, 53: 368–381

    Google Scholar 

  • Zhu D, Liu Q, Jin Z, Meng Q, Hu W. 2017. Effects of deep fluids on hydrocarbon generation and accumulation in Chinese Petroliferous Basins. Acta Geol Sin-Engl Ed, 91: 301–319

    Google Scholar 

  • Zhu D, Meng Q, Jin Z, Liu Q, Hu W. 2015a. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China. Mar Pet Geol, 59: 232–244

    Google Scholar 

  • Zhu D, Meng Q, Liu Q, Zhou B, Jin Z, Hu W. 2018. Natural enhancement and mobility of oil reservoirs by supercritical CO2 and implication for vertical multi-trap CO2 geological storage. J Pet Sci Eng, 161: 77–95

    Google Scholar 

  • Zhu D, Meng Q, Jin Z, Hu W. 2015b. Fluid environment for preservation of pore spaces in a deep dolomite reservoir. Geofluids, 15: 527–545

    Google Scholar 

  • Zhu D Y, Jin Z J, Hu W X, Zhang X F. 2008. Effects of deep fluid on carbonates reservoir in Tarim Basin (in Chinese). Geol Rev, 54: 348–354

    Google Scholar 

  • Zhu J, Li S, Sun X, Zhu J, Xin M, Xu H. 1994. Discovery of early tertiary hydrothermal activity and its significance in oil/gas geology, Dongpu Depression, Henan Province, China. Chin J Geochem, 13: 270–283

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for valuable comments and suggestions. This work was supported by National Natural Science Foundation of China (Grant Nos. 41625009, U1663201 and 41872122), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010404), and National Key Foundational Research and Development Project (Grant No. 2017YFC0603102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanyou Liu or Zhijun Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhu, D., Meng, Q. et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction. Sci. China Earth Sci. 62, 507–528 (2019). https://doi.org/10.1007/s11430-018-9281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9281-2

Keywords

Navigation