Skip to main content
Log in

Ridge subduction, magmatism, and metallogenesis

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Modern oceans contain large bathymetric highs (spreading oceanic ridges, aseismic ridges or oceanic plateaus and inactive arc ridges) that, in total, constitute more than 20–30% of the total area of the world’s ocean floor. These bathymetric highs may be subducted, and such processes are commonly referred to as ridge subduction. Such ridge subduction events are not only very common and important geodynamic processes in modern oceanic plate tectonics, they also play an important role in the generation of arc magmatism, material recycling, the growth and evolution of continental crust, the deformation and modification of the overlying plates, and metallogenesis at convergent plate boundaries. Therefore, these events have attracted widespread attention. The perpendicular or high-angle subduction of mid-ocean spreading ridges is commonly characterized by the occurrence of a slab window, and the formation of a distinctive adakite-high-Mg andesite-Nb-enriched basalt-oceanic island basalt (OIB) or a mid-oceanic ridge basalt (MORB)-type rock suite, and is closely associated with Au mineralization. Aseismic ridges or oceanic plateaus are traditionally considered to be difficult to subduct, to typically collide with arcs or continents or to induce flat subduction (low angle of less than 10°) due to the thickness of their underlying normal oceanic crust (>6–7 km) and high topography. However, the subduction of aseismic ridges and oceanic plateaus occurred on both the western and eastern sides of the Pacific Ocean during the Cenozoic. On the eastern side of the Pacific Ocean, aseismic ridges or oceanic plateaus are being subducted flatly or at low angles beneath South and Central American continents, which may cause a magmatic gap. But slab melting can occur and adakites, or an adakite-high-Mg andesite-adakitic andesite-Nb-enriched basalt suite may be formed during the slab rollback or tearing. Cu-Au mineralization is commonly associated with such flat subduction events. On the western side of the Pacific Ocean, however, aseismic ridges and oceanic plateaus are subducted at relatively high angles (>30°). These subduction processes can generate large scale eruptions of basalts, basaltic andesites and andesites, which may be derived from fractional crystallization of magmas originating from the subduction zone fluid-metasomatized mantle wedge. In addition, some inactive arc ridges are subducted beneath Southwest Japan, and these subduction processes are commonly associated with the production of basalts, high-Mg andesites and adakites and Au mineralization. Besides magmatism and Cu-Au mineralization, ridge subduction may also trigger subduction erosion in subduction zones. Future frontiers of research will include characterizing the spatial and temporal patterns of ridge subduction events, clarifying the associated geodynamic mechanisms, quantifying subduction zone material recycling, establishing the associated deep crustal and mantle events that generate or influence magmatism and Cu-Au mineralization, establishing criteria to recognize pre-Cenozoic ridge subduction, the onset of modern-style plate tectonics and the growth mechanisms for Archean continental crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abratis M, Wörner G. 2001. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology, 29: 127–130

    Google Scholar 

  • Aguillón-Robles A, Calmus T, Benoit M, Bellon H, Maury R C, Cotten J, Bourgois J, Michaud F. 2001. Late miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below Southern Baja California? Geology, 29: 531–534

    Google Scholar 

  • Ancellin M A, Samaniego P, Vlastélic I, Nauret F, Gannoun A, Hidalgo S. 2017. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc. Geochem Geophys Geosyst, 18: 1163–1188

    Google Scholar 

  • Anma R, Armstrong R, Orihashi Y, Ike S, Shin K C, Kon Y, Komiya T, Ota T, Kagashima S, Shibuya T. 2009. Are the Taitao granites formed due to subduction of the Chile ridge? Lithos, 113: 246–258

    Google Scholar 

  • Antonijevic S K, Wagner L S, Kumar A, Beck S L, Long M D, Zandt G, Tavera H, Condori C. 2015. The role of ridges in the formation and longevity of flat slabs. Nature, 524: 212–215

    Google Scholar 

  • Antretter M, Riisager P, Hall S, Zhao X, Steinberger B. 2004. Modelled palaeolatitudes for the Louisville hot spot and the Ontong Java Plateau. Geol Soc Lond Spec Publ, 229: 21–30

    Google Scholar 

  • Baillard C, Crawford W C, Ballu V, Pelletier B, Garaebiti E. 2018. Tracking subducted ridges through intermediate-depth seismicity in the Vanuatu subduction zone. Geology, 46: 767–770

    Google Scholar 

  • Bangs N L B, Gulick S P S, Shipley T H. 2006. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone. Geology, 34: 701–704

    Google Scholar 

  • Beate B, Monzier M, Spikings R, Cotten J, Silva J, Bourdon E, Eissen J P. 2001. Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: The Quimsacocha volcanic center. Earth Planet Sci Lett, 192: 561–570

    Google Scholar 

  • Beaumais A, Bertrand H, Chazot G, Dosso L, Robin C. 2016. Temporal magma source changes at Gaua volcano, Vanuatu island arc. J Volcanol Geotherm Res, 322: 30–47

    Google Scholar 

  • Beaumais A, Chazot G, Dosso L, Bertrand H. 2013. Temporal source evolution and crustal contamination at Lopevi Volcano, Vanuatu Island Arc. J Volcanol Geotherm Res, 264: 72–84

    Google Scholar 

  • Beier C, Brandl P A, Lima S M, Haase K M. 2018. Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu). Lithos, 312–313: 290–307

    Google Scholar 

  • Benoit M, Aguillón-Robles A, Calmus T, Maury R C, Bellon H, Cotten J, Bourgois J, Michaud F. 2002. Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: Implication of mantle and crustal sources during the opening of an asthenospheric window. J Geol, 110: 627–648

    Google Scholar 

  • Benowitz J A, Haeussler P J, Layer P W, O’Sullivan P B, Wallace W K, Gillis R J. 2012. Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene faulting. Geochem Geophys Geosyst, 13: Q04009

    Google Scholar 

  • Bourdon E, Eissen J P, Gutscher M A, Monzier M, Hall M L, Cotten J. 2003. Magmatic response to early aseismic ridge subduction: The Ecuadorian margin case (South America). Earth Planet Sci Lett, 205: 123–138

    Google Scholar 

  • Bourgois J, Lagabrielle Y, Martin H, Dyment J, Frutos J, Cisternas M E. 2016. A review on forearc ophiolite obduction, adakite-like generation, and slab window development at the Chile Triple Junction Area: Uniformitarian framework for spreading-ridge subduction. Pure Appl Geophys, 173: 3217–3246

    Google Scholar 

  • Bourgois J, Martin H, Lagabrielle Y, Le Moigne J, Frutos Jara J. 1996. Subduction erosion related to spreading-ridge subduction: Taitao peninsula (Chile margin triple junction area). Geology, 24: 723–726

    Google Scholar 

  • Breitsprecher K, Thorkelson D J. 2009. Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464: 10–20

    Google Scholar 

  • Breitsprecher K, Thorkelson D J, Groome W G, Dostal J. 2003. Geochemical confirmation of the Kula-Farallon slab window beneath the Pacific Northwest in Eocene time. Geology, 31: 351–354

    Google Scholar 

  • Bryant J A, Yogodzinski G M, Hall M L, Lewicki J L, Bailey D G. 2006. Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol, 47: 1147–1175

    Google Scholar 

  • Campbell I H. 2007. Testing the plume theory. Chem Geol, 241: 153–176

    Google Scholar 

  • Cann J R, Blackman D K, Smith D K, McAllister E, Janssen B, Mello S, Avgerinos E, Pascoe A R, Escartin J. 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385: 329–332

    Google Scholar 

  • Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J, Long X P, Wu F Y. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Res, 18: 638–652

    Google Scholar 

  • Cao L, Wang Z, Wu S, Gao X. 2014. A new model of slab tear of the subducting Philippine Sea Plate associated with Kyushu-Palau Ridge subduction. Tectonophysics, 636: 158–169

    Google Scholar 

  • Cao M J, Qin K Z, Li J L. 2011. Research progress on the flat subduction and its metallogenic effect, two cases analysis and some prospects (in Chinese). Acta Petrol Sin, 27: 3727–3748

    Google Scholar 

  • Chadwick J, Perfit M, McInnes B, Kamenov G, Plank T, Jonasson I, Chadwick C. 2009. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth Planet Sci Lett, 279: 293–302

    Google Scholar 

  • Clift P, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys, 42: RG2001

    Google Scholar 

  • Cole R B, Basu A R. 1992. Middle Tertiary volcanism during ridge-trench interactions in western California. Science, 258: 793–796

    Google Scholar 

  • Cole R B, Stewart B W. 2009. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics, 464: 118–136

    Google Scholar 

  • Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ Geol, 100: 801–818

    Google Scholar 

  • Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426: 405–412

    Google Scholar 

  • Dong D, Zhang Z, Bai Y, Fan J, Zhang G. 2018. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722: 410–421

    Google Scholar 

  • Eagles G. 2004. Tectonic evolution of the Antarctic-Phoenix plate system since 15 Ma. Earth Planet Sci Lett, 217: 97–109

    Google Scholar 

  • Eberhart-Phillips D, Christensen D H, Brocher T M, Hansen R, Ruppert N A, Haeussler P J, Abers G A. 2006. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data. J Geophys Res, 111: B11303

    Google Scholar 

  • Escartín J, Smith D K, Cann J, Schouten H, Langmuir C H, Escrig S. 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455: 790–794

    Google Scholar 

  • Espurt N, Funiciello F, Martinod J, Guillaume B, Regard V, Faccenna C, Brusset S. 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27: TC3011

    Google Scholar 

  • Faccenna C, Becker T W, Conrad C P, Husson L. 2013. Mountain building and mantle dynamics. Tectonics, 32: 80–93

    Google Scholar 

  • Fan J, Zhao D, Dong D. 2016. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications. Geochem Geophys Geosyst, 17: 571–586

    Google Scholar 

  • Forsythe R D, Nelson E P, Carr M J, Kaeding M E, Herve M, Mpodozis C, Soffia J M, Harambour S. 1986. Pliocene near-trench magmatism in southern Chile: A possible manifestation of ridge collision. Geology, 14: 23–27

    Google Scholar 

  • Frisch W, Meschede M, Blakey R. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin, Heidelberg: Springer. 212

    Google Scholar 

  • Fuis G S, Moore T E, Plafker G, Brocher T M, Fisher M A, Mooney W D, Nokleberg W J, Page R A, Beaudoin B C, Christensen N I, Levander A R, Lutter W J, Saltus R W, Ruppert N A. 2008. Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting. Geology, 36: 267–270

    Google Scholar 

  • Gazel E, Hayes J L, Hoernle K, Kelemen P, Everson E, Holbrook W S, Hauff F, van den Bogaard P, Vance E A, Chu S, Calvert A J, Carr M J, Yogodzinski G M. 2015. Continental crust generated in oceanic arcs. Nat Geosci, 8: 321–327

    Google Scholar 

  • Geng H Y, Sun M, Yuan C, Xiao W J, Xian W S, Zhao G C, Zhang L F, Wong K, Wu F Y. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chem Geol, 266: 364–389

    Google Scholar 

  • Gerya T V, Fossati D, Cantieni C, Seward D. 2009. Dynamic effects of aseismic ridge subduction: Numerical modeling. Eur J Mineral, 21: 649–661

    Google Scholar 

  • Gorring M L, Kay S M. 2001. Mantle processes and sources of Neogene slab window magmas from southern Patagonia, Argentina. J Petrol, 42: 1067–1094

    Google Scholar 

  • Gorring M, Singer B, Gowers J, Kay S M. 2003. Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: Evidence for asthenosphere-lithosphere interactions during slab window magmatism. Chem Geol, 193: 215–235

    Google Scholar 

  • Goss A R, Kay S M. 2006. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem Geophys Geosyst, 7: Q05016

    Google Scholar 

  • Goss A R, Kay S M, Mpodozis C. 2013. Andean Adakite-like high-Mg Andesites on the Northern Margin of the Chilean-Pampean Flat-slab (27–28.5°S) Associated with Frontal Arc Migration and Fore-arc Subduction Erosion. J Petrol, 54: 2193–2234

    Google Scholar 

  • Guillaume B, Martinod J, Husson L, Roddaz M, Riquelme R. 2009. Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction? Tectonics, 28: TC2009

    Google Scholar 

  • Guivel C, Lagabrielle Y, Bourgois J, Martin H, Arnaud N, Fourcade S, Cotten J, Maury R C. 2003. Very shallow melting of oceanic crust during spreading ridge subduction: Origin of near-trench Quaternary volcanism at the Chile Triple Junction. J Geophys Res, 108: 2345

    Google Scholar 

  • Guivel C, Morata D, Pelleter E, Espinoza F, Maury R C, Lagabrielle Y, Polvé M, Bellon H, Cotten J, Benoit M, Suárez M, de la Cruz R. 2006. Miocene to Late Quaternary Patagonian basalts (46–47°S): Geochronometric and geochemical evidence for slab tearing due to active spreading ridge subduction. J Volcanol Geotherm Res, 149: 346–370

    Google Scholar 

  • Gülcher A J P, Beaussier S J, Gerya T V. 2019. On the formation of oceanic detachment faults and their influence on intra-oceanic subduction initiation: 3D thermomechanical modeling. Earth Planet Sci Lett, 506: 195–208

    Google Scholar 

  • Gulick S P S, Lowe L A, Pavlis T L, Gardner J V, Mayer L A. 2007. Geophysical insights into the Transition fault debate: Propagating strike slip in response to stalling Yakutat block subduction in the Gulf of Alaska. Geology, 35: 763–766

    Google Scholar 

  • Gutscher M A, Olivet J L, Aslanian D, Eissen J P, Maury R. 1999. The “lost inca plateau”: Cause of flat subduction beneath Peru? Earth Planet Sci Lett, 171: 335–341

    Google Scholar 

  • Gutscher M A, Maury R, Eissen J P, Bourdon E. 2000. Can slab melting be caused by flat subduction? Geology, 28: 535–538

    Google Scholar 

  • Gutscher M A, Peacock S M. 2003. Thermal models of flat subduction and the rupture zone of great subduction earthquakes. J Geophys Res, 108: 2009

    Google Scholar 

  • Haeussler P J, Bradley D C, Wells R E, Miller M L. 2003. Life and death of the Resurrection plate: Evidence for its existence and subduction in the northeastern Pacific in Paleocene-Eocene time. Geol Soc Am Bull, 115: 867–880

    Google Scholar 

  • Haeussler P J, Bradley D, Goldfarb R, Snee L, Taylor C. 1995. Link between ridge subduction and gold mineralization in Southern Alaska. Geology, 23: 995–998

    Google Scholar 

  • Hao L L, Wang Q, Zhang C, Ou Q, Yang J H, Dan W, Jiang Z Q. 2019. Oceanic plateau subduction during closure of the Bangong-Nujiang Tethyan Ocean: Insights from central Tibetan volcanic rocks. GSA Bull, 131: 864–880

    Google Scholar 

  • Haraguchi S, Ishii T, Kimura J I, Ohara Y. 2003. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol, 145: 151–168

    Google Scholar 

  • Harris P T, Macmillan-Lawler M, Rupp J, Baker E K. 2014. Geomorphology of the oceans. Mar Geol, 352: 4–24

    Google Scholar 

  • Hastie A R, Fitton J G, Mitchell S F, Neill I, Nowell G M, Millar I L. 2015. Can fractional crystallization, mixing and assimilation processes be responsible for Jamaican-type Adakites? Implications for generating Eoarchaean continental crust. J Petrol, 56: 1251–1284

    Google Scholar 

  • Hastie A R, Kerr A C, McDonald I, Mitchell S F, Pearce J A, Wolstencroft M, Millar I L. 2010a. Do Cenozoic analogues support a plate tectonic origin for Earth’s earliest continental crust? Geology, 38: 495–498

    Google Scholar 

  • Hastie A R, Kerr A C, McDonald I, Mitchell S F, Pearce J A, Millar I L, Barfod D, Mark D F. 2010b. Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: A new adakite subgroup analogous to early Archaean continental crust? Chem Geol, 276: 344–359

    Google Scholar 

  • Hedenquist J W, Matsuhisa Y, Izawa E, White N C, Giggenbach W F, Aoki M. 1994. Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu District, Japan. Econ Geol, 89: 1–30

    Google Scholar 

  • Hickey-Vargas R. 2005. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: New Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications. Isl Arc, 14: 653–665

    Google Scholar 

  • Hoernle K, Abt D L, Fischer K M, Nichols H, Hauff F, Abers G A, van den Bogaard P, Heydolph K, Alvarado G, Protti M, Strauch W. 2008. Arcparallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature, 451: 1094–1097

    Google Scholar 

  • Holm R J, Rosenbaum G, Richards S W. 2016. Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting. Earth-Sci Rev, 156: 66–81

    Google Scholar 

  • Ichiyama Y, Ishiwatari A, Kimura J I, Senda R, Miyamoto T. 2014. Jurassic plume-origin ophiolites in Japan: Accreted fragments of oceanic plateaus. Contrib Mineral Petrol, 168: 1019

    Google Scholar 

  • Ishizuka O, Hickey-Vargas R, Arculus R J, Yogodzinski G M, Savov I P, Kusano Y, McCarthy A, Brandl P A, Sudo M. 2018. Age of Izu-Bonin-Mariana arc basement. Earth Planet Sci Lett, 481: 80–90

    Google Scholar 

  • Johnston S T, Thorkelson D J. 1997. Cocos-Nazca slab window beneath Central America. Earth Planet Sci Lett, 146: 465–474

    Google Scholar 

  • Kay S M, Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11: 4–9

    Google Scholar 

  • Kay S M, Ramos V A, Marquez M. 1993. Evidence in Cerro Pampa Volcanic Rocks for slab-melting prior to ridge-trench collision in Southern South America. J Geol, 101: 703–714

    Google Scholar 

  • Keenan T E, Encarnación J, Buchwaldt R, Fernandez D, Mattinson J, Rasoazanamparany C, Luetkemeyer P B. 2016. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proc Natl Acad Sci USA, 113: E7359–E7366

    Google Scholar 

  • Kerr A C. 2014. Oceanic Plateaus. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier. 631–667

    Google Scholar 

  • Kerr A C, Tarney J. 2005. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33: 269–272

    Google Scholar 

  • Kerr A C, Marriner G F, Tarney J, Nivia A, Saunders A D, Thirlwall M F, Sinton C W. 1997. Cretaceous basaltic terranes in western Colombia: Elemental, chronological and Sr-Nd constraints on petrogenesis. J Petrol, 38: 677–702

    Google Scholar 

  • Kerrich R, Wyman D, Fan J, Bleeker W. 1998. Boninite series: Low Titholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth Planet Sci Lett, 164: 303–316

    Google Scholar 

  • Kimura G, Sakakibara M, Okamura M. 1994. Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan. Tectonics, 13: 905–916

    Google Scholar 

  • König S, Schuth S, Münker C, Qopoto C. 2007. The role of slab melting in the petrogenesis of high-Mg andesites: Evidence from Simbo Volcano, Solomon Islands. Contrib Mineral Petrol, 153: 85–103

    Google Scholar 

  • Koppers A A P, Gowen M D, Colwell L E, Gee J S, Lonsdale P F, Mahoney J J, Duncan R A. 2011. New 40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter-hot spot motion. Geochem Geophys Geosyst, 12: Q0AM02

    Google Scholar 

  • Kuiper Y D. 2016. Development of the Norumbega fault system in mid-Paleozoic New England, USA: An integrated subducted oceanic ridge model. Geology, 44: 455–458

    Google Scholar 

  • Lagabrielle Y, Guivel C, Maury R C, Bourgois J, Fourcade S, Martin H. 2000. Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: The Chile Triple Junction model. Tectonophysics, 326: 255–268

    Google Scholar 

  • Lagabrielle Y, Moigne J L, Maury R C, Cotten J, Bourgois J. 1994. Volcanic record of the subduction of an active spreading ridge, Taitao peninsula (southern Chile). Geology, 22: 515–518

    Google Scholar 

  • Levin V, Shapiro N, Park J, Ritzwoller M. 2002. Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature, 418: 763–767

    Google Scholar 

  • Levin V, Shapiro N M, Park J, Ritzwoller M H. 2005. Slab portal beneath the western Aleutians. Geology, 33: 253–256

    Google Scholar 

  • Li H, Ling M X, Ding X, Zhang H, Li C Y, Liu D Y, Sun W D. 2014. The geochemical characteristics of Haiyang A-type granite complex in Shandong, eastern China. Lithos, 200–201: 142–156

    Google Scholar 

  • Li S M, Zhu D C, Wang Q, Zhao Z, Zhang L L, Liu S A, Chang Q S, Lu Y H, Dai J G, Zheng Y C. 2016. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156±2 Ma from the north of Gerze, central Tibet: Records of the Bangong-Nujiang oceanic ridge subduction during the Late Jurassic. Lithos, 262: 456–469

    Google Scholar 

  • Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W. 2009. Cretaceous ridge subduction along the Lower Yangtze river belt, eastern China. Econ Geol, 104: 303–321

    Google Scholar 

  • Ling M X, Wang F Y, Ding X, Zhou J B, Sun W. 2011. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: Geochemical constraints. Int Geol Rev, 53: 727–740

    Google Scholar 

  • Ling M X, Li Y, Ding X, Teng F Z, Yang X Y, Fan W M, Xu Y G, Sun W. 2013. Destruction of the North China craton induced by ridge subductions. J Geol, 121: 197–213

    Google Scholar 

  • Liu C Z, Zhang C, Yang L Y, Zhang L L, Ji W Q, Wu F Y. 2014. Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 205: 127–141

    Google Scholar 

  • Liu L, Stegman D R. 2012. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 482: 386–389

    Google Scholar 

  • Liu L, Gurnis M, Seton M, Saleeby J, Müller R D, Jackson J M. 2010. The role of oceanic plateau subduction in the Laramide orogeny. Nat Geosci, 3: 353–357

    Google Scholar 

  • Livaccari R F, Burke K, Şengör A M C. 1981. Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, 289: 276–278

    Google Scholar 

  • Livermore R. 2003. Back-arc spreading and mantle flow in the east Scotia Sea. In: Larter R D, Leat P T, eds. Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes. London: Geol Soc Lond Spec Publ. 315–331

    Google Scholar 

  • Livermore R, Eagles G, Morris P, Maldonado A. 2004. Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation. Geology, 32: 797–800

    Google Scholar 

  • Lu L, Yan L L, Li Q H, Zeng L, Jin X, Zhang Y X, Hou Q L, Zhang K J. 2016. Oceanic plateau and its significances on the Earth system: A review (in Chinese). Acta Petrol Sin, 32: 1851–1876

    Google Scholar 

  • Lytwyn J, Casey J, Gilbert S, Kusky T. 1997. Arc-like mid-ocean ridge basalt formed seaward of a trench-forearc system just prior to ridge subduction: An example from subaccreted ophiolites in southern Alaska. J Geophys Res, 102: 10225–10243

    Google Scholar 

  • Madsen J K, Thorkelson D J, Friedman R M, Marshall D D. 2006. Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America. Geosphere, 2: 11–34

    Google Scholar 

  • Maffione M, Thieulot C, van Hinsbergen D J J, Morris O, Plümper A, Spakman W. 2015. Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites. Geochem Geophys Geosyst, 16: 1753–1770

    Google Scholar 

  • Manea V C, Manea M, Ferrari L. 2013. A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America. Tectonophysics, 609: 56–81

    Google Scholar 

  • Mann P, Taira A. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 389: 137–190

    Google Scholar 

  • Margirier A, Robert X, Audin L, Gautheron C, Bernet M, Hall S, Simon-Labric T. 2015. Slab flattening, magmatism, and surface uplift in the Cordillera Occidental (northern Peru). Geology, 43: 1031–1034

    Google Scholar 

  • Martin H, Moyen J F, Guitreau M, Blichert-Toft J, Le Pennec J L. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198–199: 1–13

    Google Scholar 

  • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24

    Google Scholar 

  • Martinod J, Guillaume B, Espurt N, Faccenna C, Funiciello F, Regard V. 2013. Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: Insights from analogue modeling. Tectonophysics, 588: 39–55

    Google Scholar 

  • Mason W G, Moresi L, Betts P G, Miller M S. 2010. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones. Tectonophysics, 483: 71–79

    Google Scholar 

  • McCrory P A, Wilson D S. 2009. Introduction to Special Issue on: Interpreting the tectonic evolution of Pacific Rim margins using plate kinematics and slab-window volcanism. Tectonophysics, 464: 3–9

    Google Scholar 

  • McGeary S, Nur A, Ben-Avraham Z. 1985. Spatial gaps in arc volcanism: The effect of collision or subduction of oceanic plateaus. Tectonophysics, 119: 195–221

    Google Scholar 

  • Meneghini F, Kisters A, Buick I, Fagereng A. 2014. Fingerprints of late Neoproterozoic ridge subduction in the Pan-African Damara belt, Namibia. Geology, 42: 903–906

    Google Scholar 

  • Michael P J, Langmuir C H, Dick H J B, Snow J E, Goldstein S L, Graham D W, Lehnert K, Kurras G, Jokat W, Mühe R, Edmonds H N. 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 423: 956–961

    Google Scholar 

  • Miura S, Suyehiro K, Shinohara M, Takahashi N, Araki E, Taira A. 2004. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data. Tectonophysics, 389: 191–220

    Google Scholar 

  • Morell K D, Gardner T W, Fisher D M, Idleman B D, Zellner H M. 2013. Active thrusting, landscape evolution, and late Pleistocene sector collapse of Baru Volcano above the Cocos-Nazca slab tear, southern Central America. Geol Soc Am Bull, 125: 1301–1318

    Google Scholar 

  • Morell K D, Kirby E, Fisher D M, van Soest M. 2012. Geomorphic and exhumational response of the Central American Volcanic Arc to Cocos Ridge subduction. J Geophys Res, 117: B04409

    Google Scholar 

  • Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42–43

    Google Scholar 

  • Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23: 395–398

    Google Scholar 

  • Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30: 915–918

    Google Scholar 

  • Nishizawa A, Kaneda K, Katagiri Y, Oikawa M. 2014. Wide-angle refraction experiments in the Daito Ridges region at the northwestern end of the Philippine Sea plate. Earth Planet Space, 66: 25

    Google Scholar 

  • Niu Y, Liu Y, Xue Q, Shao F, Chen S, Duan M, Guo P, Gong H, Hu Y, Hu Z, Kong J, Li J, Liu J, Sun P, Sun W, Ye L, Xiao Y, Zhang Y. 2015. Exotic origin of the Chinese continental shelf: New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Sci Bull, 60: 1598–1616

    Google Scholar 

  • Niu Y, O’Hara M J, Pearce J A. 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrological perspective. J Petrol, 44: 851–866

    Google Scholar 

  • Osozawa S, Shinjo R, Lo C H, Jahn B, Hoang N, Sasaki M, Ishikawa K, Kano H, Hoshi H, Xenophontos C, Wakabayashi J. 2012. Geochemistry and geochronology of the Troodos ophiolite: An SSZ ophiolite generated by subduction initiation and an extended episode of ridge subduction? Lithosphere, 4: 497–510

    Google Scholar 

  • Petterson M G, Neal C R, Mahoney J J, Kroenke L W, Saunders A D, Babbs T L, Duncan R A, Tolia D, McGrail B. 1997. Structure and deformation of north and central Malaita, Solomon Islands: Tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics, 283: 1–33

    Google Scholar 

  • Polat A, Kerrich R. 2002. Nd-isotope systematics of ∼2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: Evidence for shallow crustal recycling at Archean subduction zones. Earth Planet Sci Lett, 202: 345–360

    Google Scholar 

  • Polat A, Hofmann A W, Rosing M T. 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol, 184: 231–254

    Google Scholar 

  • Portner D E, Beck S, Zandt G, Scire A. 2017. The nature of subslab slow velocity anomalies beneath South America. Geophys Res Lett, 44: 4747–4755

    Google Scholar 

  • Ramírez de Arellano C, Putlitz B, Müntener O, Ovtcharova M. 2012. High precision U/Pb zircon dating of the Chaltén Plutonic Complex (Cerro Fitz Roy, Patagonia) and its relationship to arc migration in the southernmost Andes. Tectonics, 31: TC4009

    Google Scholar 

  • Ranero C R, von Huene R. 2000. Subduction erosion along the Middle America convergent margin. Nature, 404: 748–752

    Google Scholar 

  • Rogers G, Saunders A D, Terrell D J, Verma S P, Marriner G F. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315: 389–392

    Google Scholar 

  • Rosenbaum G, Mo W. 2011. Tectonic and magmatic responses to the subduction of high bathymetric relief. Gondwana Res, 19: 571–582

    Google Scholar 

  • Rosenbaum G, Gasparon M, Lucente F P, Peccerillo A, Miller M S. 2008. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics, 27: TC2008

    Google Scholar 

  • Rosenbaum G, Giles D, Saxon M, Betts P G, Weinberg R F, Duboz C. 2005. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru. Earth Planet Sci Lett, 239: 18–32

    Google Scholar 

  • Russo R M, Gallego A, Comte D, Mocanu V I, Murdie R E, VanDecar J C. 2010a. Source-side shear wave splitting and upper mantle flow in the Chile Ridge subduction region. Geology, 38: 707–710

    Google Scholar 

  • Russo R M, VanDecar J C, Comte D, Mocanu V I, Gallego A, Murdie R E. 2010b. Subduction of the Chile Ridge: Upper mantle structure and flow. Geol Soc Am, 20: 4–10

    Google Scholar 

  • Salze M, Martinod J, Guillaume B, Kermarrec J J, Ghiglione M C, Sue C. 2018. Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia. Tectonophysics, 737: 27–39

    Google Scholar 

  • Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen J P, Cotten J. 2005. Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: The geology and petrology of Cayambe Volcanic Complex (Ecuador). J Petrol, 46: 2225–2252

    Google Scholar 

  • Samaniego P, Martin H, Robin C, Monzier M. 2002. Transition from calcalkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slab melts and mantle wedge interactions. Geology, 30: 967–970

    Google Scholar 

  • Scharman M R, Pavlis T L, Ruppert N. 2012. Crustal stabilization through the processes of ridge subduction: Examples from the Chugach metamorphic complex, southern Alaska. Earth Planet Sci Lett, 329–330: 122–132

    Google Scholar 

  • Schoonmaker A, Kidd W S F, DeLong S E, Bender J F. 2014. Lawrence head volcanics and dunnage melange, Newfoundland Appalachians: Origin by Ordovician ridge subduction or in back-arc rift? Geosci Can, 41: 523–556

    Google Scholar 

  • Schuth S, König S, Münker C. 2011. Subduction zone dynamics in the SW Pacific plate boundary region constrained from high-precision Pb isotope data. Earth Planet Sci Lett, 311: 328–338

    Google Scholar 

  • Seton M, Flament N, Whittaker J, Müller R D, Gurnis M, Bower D J. 2015. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60–50 million years ago. Geophys Res Lett, 42: 1732–1740

    Google Scholar 

  • Shirey S B, Hanson G N. 1984. Mantle-derived Archaean monozodiorites and trachyandesites. Nature, 310: 222–224

    Google Scholar 

  • Shulgin A, Kopp H, Mueller C, Planert L, Lueschen E, Flueh E R, Djajadihardja Y. 2011. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards. Geophys J Int, 184: 12–28

    Google Scholar 

  • Sigloch K, McQuarrie N, Nolet G. 2008. Two-stage subduction history under North America inferred from multiple-frequency tomography. Nat Geosci, 1: 458–462

    Google Scholar 

  • Sisson V B, Pavlis T L, Roeske S M, Thorkelson D J. 2003. Introduction: An overview of ridge-trench interactions in modern and ancient settings. In: Sisson V B, Roeske S M, Pavlis T L, eds. Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction Along the North Pacific Margin. Geol Soc Am, 371: 1–18

  • Sleep N H. 1992. Hotspot volcanism and mantle plumes. Annu Rev Earth Planet Sci, 20: 19–43

    Google Scholar 

  • Smith D K, Cann J R, Escartín J. 2006. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature, 442: 440–443

    Google Scholar 

  • Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 182: 115–125

    Google Scholar 

  • Smithies R H, Champion D C, Cassidy K F. 2003. Formation of Earth’s early Archaean continental crust. Precambrian Res, 127: 89–101

    Google Scholar 

  • Smithies R H, Champion D C, Sun S S. 2004. Early evidence for LILE-enriched mantle source regions: Diverse magmas from the c. 3.0 Ga Mallina Basin, Pilbara Craton, NW Australia. J Petrol, 45: 1515–1537

    Google Scholar 

  • Solomon M. 1990. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology, 18: 630–633

    Google Scholar 

  • Staudigel H, Koppers A A P, Plank T A, Hanan B B. 2010. Seamounts in the Subduction Factory. Oceanography, 23: 176–181

    Google Scholar 

  • Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol, 123: 263–281

    Google Scholar 

  • Stern R J. 2007. When and how did plate tectonics begin? Theoretical and empirical considerations. Chin Sci Bull, 52: 578–591

    Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012

    Google Scholar 

  • Sun M, Long X P, Cai K D, Jiang Y D, Wang B Y, Yuan C, Zhao G C, Xiao W J, Wu F Y. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Sci China Ser D-Earth Sci, 52: 1345–1358

    Google Scholar 

  • Sun W, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the West Pacific. Earth Planet Sci Lett, 262: 533–542

    Google Scholar 

  • Sun W, Huang R, Li H, Hu Y, Zhang C, Sun S, Zhang L, Ding X, Li C, Zartman R E, Ling M. 2015. Porphyry deposits and oxidized magmas. Ore Geol Rev, 65: 97–131

    Google Scholar 

  • Sun W, Liang H, Ling M, Zhan M, Ding X, Zhang H, Yang X, Li Y, Ireland T R, Wei Q, Fan W. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta, 103: 263–275

    Google Scholar 

  • Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci China Earth Sci, 53: 475–484

    Google Scholar 

  • Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H, Yang Y H. 2012b. Late Carboniferous high εNd(t)-µHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 140–141: 86–102

    Google Scholar 

  • Tang G J, Wyman D A, Wang Q, Li J, Li Z X, Zhao Z H, Sun W D. 2012a. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth Planet Sci Lett, 329–330: 84–96

    Google Scholar 

  • Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H, Jia X H, Jiang Z Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chem Geol, 277: 281–300

    Google Scholar 

  • Tatsumi Y. 2005. The subduction factory: How it operates in the evolving Earth. GSA Today, 15: 4–10

    Google Scholar 

  • Taylor F W, Mann P, Bevis M G, Edwards R L, Cheng H, Cutler K B, Gray S C, Burr G S, Beck J W, Phillips D A, Cabioch G, Recy J. 2005. Rapid forearc uplift and subsidence caused by impinging bathymetric features: Examples from the New Hebrides and Solomon arcs. Tectonics, 24: TC6005

    Google Scholar 

  • Taylor F W, Briggs R W, Frohlich C, Brown A, Hornbach M, Papabatu A K, Meltzner A J, Billy D. 2008. Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake. Nat Geosci, 1: 253–257

    Google Scholar 

  • Thorkelson D J. 1996. Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255: 47–63

    Google Scholar 

  • Thorkelson D J, Madsen J K, Sluggett C L. 2011. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39: 267–270

    Google Scholar 

  • Thorkelson D J, Breitsprecher K. 2005. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas. Lithos, 79: 25–41

    Google Scholar 

  • Timm C, Bassett D, Graham I J, Leybourne M I, de Ronde C E J, Woodhead J, Layton-Matthews D, Watts A B. 2013. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc. Nat Commun, 4: 1720

    Google Scholar 

  • Turner S, Hawkesworth C. 1998. Using geochemistry to map mantle flow beneath the Lau Basin. Geology, 26: 1019–1022

    Google Scholar 

  • Turner S, Hawkesworth C. 1997. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature, 389: 568–573

    Google Scholar 

  • van Hunen J, Moyen J F. 2012. Archean subduction: Fact or fiction? Annu Rev Earth Planet Sci, 40: 195–219

    Google Scholar 

  • Vannucchi P, Morgan J P, Balestrieri M L. 2016. Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications. Gondwana Res, 40: 184–198

    Google Scholar 

  • Vogt P R. 1973. Subduction and aseismic ridges. Nature, 241: 189–191

    Google Scholar 

  • von Huene R, Scholl D W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys, 29: 279–316

    Google Scholar 

  • von Huene R, Ranero C R, Vannucchi P. 2004. Generic model of subduction erosion. Geology, 32: 913–916

    Google Scholar 

  • Wallace L M, Ellis S, Miyao K, Miura S, Beavan J, Goto J. 2009. Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision. Geology, 37: 143–146

    Google Scholar 

  • Weissel J K, Taylor B, Karner G D. 1982. The opening of the Woodlark Basin, subduction of the Woodlark spreading system, and the evolution of Northern Melanesia since mid-pliocene time. Tectonophysics, 87: 253–277

    Google Scholar 

  • Whattam S A, Stern R J. 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Res, 27: 38–63

    Google Scholar 

  • Whittaker J M, Müller R D, Leitchenkov G, Stagg H, Sdrolias M, Gaina C, Goncharov A. 2007. Major Australian-Antarctic Plate reorganization at Hawaiian-Emperor bend time. Science, 318: 83–86

    Google Scholar 

  • Wilson J T. 1963. A possible origin of the Hawaiian Islands. Can J Phys, 41: 863–870

    Google Scholar 

  • Windley B F, Xiao W. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Res, 61: 73–87

    Google Scholar 

  • Worthington L L, van Avendonk H J A, Gulick S P S, Christeson G L, Pavlis T L. 2012. Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. J Geophys Res, 117: B01102

    Google Scholar 

  • Wu F Y, Liu C Z, Zhang L L, Zhang C, Wang J G, Ji W Q, Liu X C. 2014. Yarlung Zangbo ophiolite: A critical updated view (in Chinese). Acta Petrol Sin, 30: 293–325

    Google Scholar 

  • Yan Q, Shi X. 2014. Geological effects of aeismic ridges or seamount chains subduction on the supra-subduction zone (in Chinese). Acta Oceanol Sin, 26: 107–123

    Google Scholar 

  • Yang T F, Lee T, Chen C H, Cheng S N, Knittel U, Punongbayan R S, Rasdas A R. 1996. A double island arc between Taiwan and Luzon: Consequence of ridge subduction. Tectonophysics, 258: 85–101

    Google Scholar 

  • Yesson C, Clark M R, Taylor M L, Rogers A D. 2011. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res Part I-Oceanogr Res Pap, 58: 442–453

    Google Scholar 

  • Yogodzinski G M, Kay R W, Volynets O N, Koloskov A V, Kay S M. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull, 107: 505–519

    Google Scholar 

  • Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Wöerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409: 500–504

    Google Scholar 

  • Yogodzinski G M, Volynets O N, Koloskov A V, Seliverstov N I, Matvenkov V V. 1994. Magnesian andesites and the subduction component in a strongly calcalkaline series at Piip Volcano, far western Aleutians. J Petrol, 35: 163–204

    Google Scholar 

  • Yoneshima S, Mochizuki K, Araki E, Hino R, Shinohara M, Suyehiro K. 2005. Subduction of the Woodlark Basin at New Britain Trench, Solomon Islands region. Tectonophysics, 397: 225–239

    Google Scholar 

  • Yonkee W A, Weil A B. 2015. Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system. Earth-Sci Rev, 150: 531–593

    Google Scholar 

  • Zeumann S, Hampel A. 2016. Three-dimensional finite-element models on the deformation of forearcs caused by aseismic ridge subduction: The role of ridge shape, friction coefficient of the plate interface and mechanical properties of the forearc. Tectonophysics, 684: 76–91

    Google Scholar 

  • Zhan M Z, Sun W D, Ling M X, Li H. 2015. Huangyan ridge subduction and formation of porphyry Cu-Au deposits in Luzon (in Chinese). Acta Petrol Sin, 31: 2101–2114

    Google Scholar 

  • Zhang C, Liu C Z, Xu Y, Ji W B, Wang J M, Wu F Y, Liu T, Zhang Z Y, Zhang W Q. 2019. Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth Planet Sci Lett, 523: 115707

    Google Scholar 

  • Zhang H, Ling M X, Liu Y L, Tu X L, Wang F Y, Li C Y, Liang H Y, Yang X Y, Arndt N T, Sun W D. 2013. High oxygen fugacity and slab melting linked to Cu mineralization: Evidence from Dexing Porphyry copper deposits, Southeastern China. J Geol, 121: 289–305

    Google Scholar 

  • Zhang J, Li J B, Ding W W. 2012. Reviews of the study on crustal structure and evolution of the Kyushu-Palau ridge (in Chinese). Adv Mar Sci, 30: 595–607

    Google Scholar 

  • Zhang K J, Xia B, Zhang Y X, Liu W L, Zeng L, Li J F, Xu L F. 2014. Central Tibetan Meso-Tethyan oceanic plateau. Lithos, 210–211: 278–288

    Google Scholar 

  • Zhang Z M, Zhao G C, Santosh M, Wang J L, Dong X, Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Res, 17: 615–631

    Google Scholar 

  • Zhao D, Fujisawa M, Toyokuni G. 2017. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (MW7.9). Sci Report, 7: 44487

    Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Google Scholar 

  • Zheng Y F, Zhao Z F. 2017. Introduction to the structures and processes of subduction zones. J Asian Earth Sci, 145: 1–15

    Google Scholar 

  • Zheng Y F, Zhao G C. 2020. Two styles of plate tectonics in Earth’s history. Sci Bull, 65: 329–334

    Google Scholar 

  • Zheng Y F, Xu Z, Chen L, Dai L Q, Zhao Z F. 2020. Chemical geodynamics of mafic magmatism above subduction zones. J Asian Earth Sci, 194: 104185, doi: https://doi.org/10.1016/j.jseaes.2019.104185

    Google Scholar 

  • Zhou Q, Liu L, Hu J. 2018. Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs. Nat Geosci, 11: 70–76

    Google Scholar 

  • Zhou Y. 2018. Anomalous mantle transition zone beneath the Yellowstone hotspot track. Nat Geosci, 11: 449–453

    Google Scholar 

  • Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429–1454

    Google Scholar 

Download references

Acknowledgements

We are grateful to Editor-in-Chief Professor Yong-Fei Zheng and three anonymous reviewers for their constructive and helpful comments on this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41630208 and 91855215), the National Key R & D Program of China (Grant No. 2016YFC0600407), the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA2007030402), the Key Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC026), and the Key Program of Guangzhou City (Grant No. 201707020032). This is contribution No.IS-2873 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Tang, G., Hao, L. et al. Ridge subduction, magmatism, and metallogenesis. Sci. China Earth Sci. 63, 1499–1518 (2020). https://doi.org/10.1007/s11430-019-9619-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9619-9

Keywords

Navigation