Skip to main content
Log in

Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: A case study in the Zoige Basin in the eastern Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The X-ray fluorescence (XRF) core-scanned Rb/Sr ratios of lake sediments have been widely used as a proxy for chemical weathering intensity and past climate change. However, some factors could affect Rb/Sr ratios, causing misinterpretation and limiting its application. In this study, we present a high-resolution XRF core-scanned Rb/Sr record of core ZB13-C1 from the Zoige Basin in the eastern Tibetan Plateau. To validate its application, we correlated this record with the chemical index of alteration (CIA) and other paleoclimatic proxies. Our results showed that (1) the core-scanned Rb/Sr ratios and CIA were reliable proxies of chemical weathering intensity in fine-grained sedimentary sequences; (2) the low values of core-scanned Rb/Sr ratios and CIA were significantly correlated with high total organic carbon content, arboreal pollen content, carbonate content, and C/N ratios, confirming its reliability as a proxy for the Asian summer monsoon intensity; (3) the core-scanned Rb/Sr ratios at core depths of 25–0.3 and 56–17 m were unable to reliably reflect chemical weathering intensity due to both the grain-size effect and the low test accuracy. Our study highlights the need for mutual verification of multiple indicators before accurately applying Rb/Sr as a paleoclimatic proxy in other similar study areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison J. 1982. The statistical analysis of compositional data. J Roy Stat Soc B, 44: 139–177

    Google Scholar 

  • Aitkenhead J A, McDowell W H. 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Glob Biogeochem Cycle, 14: 127–138

    Google Scholar 

  • An Z S, Steven C C, Shen J, Qiang X K, Jin Z D, Sun Y B, Warren L P, Luo J J, Wang S M, Xu H, Cai Y J, Zhou W J, Liu X D, Liu W G, Shi Z G, Yan L B, Xiao X Y, Chang H, Wu F, Ai L, Lu F Y. 2011. Glacial-interglacial Indian summer monsoon dynamics. Science, 333: 719–723

    Google Scholar 

  • Bao J, Song C C, Yang Y B, Fang X M, Meng Q Q, Ying F, He P J. 2019. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. J Asian Earth Sci, 170: 155–165

    Google Scholar 

  • Bjørlykke K. 2010. Sedimentary geochemistry: How sediments are produced. In: Bjørlykke K, ed. Petroleum Geoscience: From Sedimentary Environments to Rock Physics. 2nd ed. Berlin: Springer-Verlag. 91–117

    Google Scholar 

  • Bottino M L, Fullagar P D. 1968. The effects of weathering on whole-rock Rb-Sr ages of granitic rocks. Am J Sci, 266: 661–670

    Google Scholar 

  • Buggle B, Glaser B, Hambach U, Gerasimenko N, Marković S. 2011. An evaluation of geochemical weathering indices in loess-paleosol studies. Quat Int, 240: 12–21

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Sichuan Province. 1991. Regional Geology of Sichuan Province. Beijing: Geological Publishing House. 293–308

    Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. Berlin: Springer-Verlag. 623

    Google Scholar 

  • Chang H, An Z S, Wu F, Jin Z D, Liu W G, Song Y G. 2013. A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol, 386: 364–373

    Google Scholar 

  • Chen F H, Bloemendal J, Zhang P Z, Liu G X. 1999. An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 151: 307–320

    Google Scholar 

  • Chen J, An Z S, Head J. 1999b. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130000 years and their implications for monsoon paleoclimatology. Quat Res, 51: 215–219

    Google Scholar 

  • Chen J, An Z, Wang Y, Ji J, Chen Y, Lu H. 1999a. Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka. Sci China Ser D-Earth Sci, 42: 225–232

    Google Scholar 

  • Chen Y, Chen J, Liu L, Ji J, Zhang J. 2003. Spatial and temporal changes of summer monsoon on the Loess Plateau of central china during the last 130 ka inferred from Rb/Sr ratios. Sci China Ser D-Earth Sci, 46: 1022–1030

    Google Scholar 

  • Cohen A S. 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford: Oxford University Press. 162–207

    Google Scholar 

  • Croudace I W, Rindby A, Rothwell R G. 2006. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. In: Rothwell R G, ed. New Techniques in Sediment Core Analysis. London: Geological Society. 51–63

    Google Scholar 

  • Croudace I W, Rothwell R G. 2015. Micro-XRF Studies of Sediment Cores. Developments in Paleoenvironmental Research. Berlin: Springer-Verlag. 189–226

    Google Scholar 

  • Dasch E J. 1969. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim Cosmochim Acta, 33: 1521–1552

    Google Scholar 

  • Dietze E, Maussion F, Ahlborn M, Diekmann B, Hartmann K, Henkel K, Kasper T, Lockot G, Opitz S, Haberzettl T. 2014. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments. Clim Past, 10: 91–106

    Google Scholar 

  • Ding Y H. 1992. Effects of the Qinghai-Xizang (Tibetan) Plateau on the circulation features over the plateau and its surrounding areas. Adv Atmos Sci, 9: 112–130

    Google Scholar 

  • Dypvik H, Harris N B. 2001. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chem Geol, 181: 131–146

    Google Scholar 

  • Fralick P W, Kronberg B I. 1997. Geochemical discrimination of clastic sedimentary rock sources. Sedimen Geol, 113: 111–124

    Google Scholar 

  • Francke A, Wennrich V, Sauerbrey M, Juschus O, Melles M, Brigham-Grette J. 2013. Multivariate statistic and time series analyses of grain-size data in Quaternary sediments of Lake El’gygytgyn, NE Russia. Clim Past, 9: 2459–2470

    Google Scholar 

  • Fritz M, Unkel I, Lenz J, Gajewski K, Frenzel P, Paquette N, Lantuit H, Körte L, Wetterich S. 2018. Regional environmental change versus local signal preservation in Holocene thermokarst lake sediments: A case study from Herschel Island, Yukon (Canada). J Paleolimnol, 60: 77–96

    Google Scholar 

  • Gallet S, Jahn B, Torii M. 1996. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem Geol, 133: 67–88

    Google Scholar 

  • Hakanson L, Jansson M. 1983. Principles of Lake Sedimentology. Berlin: Springer-Verlag. 148–176

    Google Scholar 

  • Hebbeln D, Knudsen K L, Gyllencreutz R, Kristensen P, Klitgaard-Kristensen D, Backman J, Scheurle C, Jiang H, Gil I, Smelror M, Jones P D, Sejrup H P. 2006. Late Holocene coastal hydrographic and climate changes in the eastern North Sea. Holocene, 16: 987–1001

    Google Scholar 

  • Heymann C, Nelle O, Dörfler W, Zagana H, Nowaczyk N, Xue J, Unkel I. 2013. Late Glacial to mid-Holocene palaeoclimate development of Southern Greece inferred from the sediment sequence of Lake Stymphalia (NE-Peloponnese). Quat Int, 302: 42–60

    Google Scholar 

  • Hong Y T, Hong B, Lin Q H, Zhu Y X, Shibata Y, Hirota M, Uchida M, Leng X T, Jiang H B, Xu H, Wang H, Yi L. 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett, 211: 371–380

    Google Scholar 

  • Hu S Y, Appel E, Wang S M, Wu J L, Xue B, Wang Y X, Qian J L, Xiang L. 1999. A preliminary magnetic study on lacustrine sediments from Zoigê Basin, eastern Tibetan Plateau, China: Magnetostratigraphy and environmental implications. Phys Chem Earth, 24: 811–816

    Google Scholar 

  • Hunt J E, Croudace I W, Maclachlan S E. 2015. Use of calibrated ITRAX XRF data in determining geochemistry and provenance in Agadir Basin, Northwest African Passive Margin. In: Croudace I W, Rothwell R G, eds. 2015. Micro-XRF Studies of Sediment Cores. Developments in Paleoenvironmental Research. Berlin: Springer-Verlag. 127–146

    Google Scholar 

  • Jackson M L. 1956. Soil Chemical Analysis—Advanced Course. Madison: University of Wisconsin. 991

    Google Scholar 

  • Jansen J H F, Van der Gaast S J, Koster B, Vaars A J. 1998. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar Geol, 151: 143–153

    Google Scholar 

  • Jian X, Guan P, Zhang W, Feng F. 2013. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering. Chem Geol, 360–361: 74–88

    Google Scholar 

  • Jin Z D, Cao J J, Wu J L, Wang S M. 2006. A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surf Process Landf, 31: 285–291

    Google Scholar 

  • Jin Z D, Wang S M, Shen J, Zhang E L, Li F C, Ji J F, Lu X W. 2001. Chemical weathering since the Little Ice Age recorded in lake sediments: A high-resolution proxy of past climate. Earth Surf Process Landf, 26: 775–782

    Google Scholar 

  • Jin Z D, Zhang E L. 2002. Paleoclimate implication of Rb/Sr ratios from lake sediments (in Chinese). Sci Tech Engin, 2: 20–22

    Google Scholar 

  • Kalugin I, Daryin A, Smolyaninova L, Andreev A, Diekmann B, Khlystov O. 2007. 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quat Res, 67: 400–410

    Google Scholar 

  • Kalugin I, Selegei V, Goldberg E, Seret G. 2005. Rhythmic fine-grained sediment deposition in Lake Teletskoye, Altai, Siberia, in relation to regional climate change. Quat Int, 136: 5–13

    Google Scholar 

  • Khan N S, Vane C H, Horton B P, Hillier C, Riding J B, Kendrick C P. 2015. The application of δ13C, TOC and C/N geochemistry to reconstruct Holocene relative sea levels and paleoenvironments in the Thames Estuary, UK. J Quat Sci, 30: 417–433

    Google Scholar 

  • Lan J, Xu H, Yu K, Sheng E, Zhou K, Wang T, Ye Y, Yan D, Wu H, Cheng P, Abuliezi W, Tan L. 2019. Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia. Sci China Earth Sci, 62: 1288–1301

    Google Scholar 

  • Li Q, Zhao Y. 2019. Abrupt climatic changes in the Holocene recorded by the history of peat formation in Zoige Basin on the eastern Tibetan Plateau (in Chinese). Quat Res, 39: 1323–1332

    Google Scholar 

  • Liu D W, Bertrand S, Weltje G J. 2019. An empirical method to predict sediment grain size from inorganic geochemical measurements. Geochem Geophys Geosyst, 20: 3690–3704

    Google Scholar 

  • Liu G X, Shen Y P, Zhang P Z, Wang S M. 1994. Pollen record and its palaeoclimatic significance between 800–150 ka BP from RH-core in Zoige Basin in Qinghai-Xizang (Tibet) Plateau. Acta Sedimentol Sin, 12: 101–109

    Google Scholar 

  • Liu J, Wang Y, Wang Y, Guan Y, Dong J, Li T. 2018. A multi-proxy record of environmental changes during the Holocene from the Haolaihure Paleolake sediments, Inner Mongolia. Quat Int, 479: 148–159

    Google Scholar 

  • Luo L Q, Zhan X C, Li G H. 2008. X-ray Fluorescence Spectrometer (in Chinese). Beijing: Chemical Industry Press. 188

    Google Scholar 

  • MacLean W H, Hoy L D. 1991. Geochemistry of hydrothermally altered rocks at the Horne Mine, Noranda, Quebec. Econ Geol, 86: 506–528

    Google Scholar 

  • Marshall M H, Lamb H F, Huws D, Davies S J, Bates R, Bloemendal J, Boyle J, Leng M J, Umer M, Bryant C. 2011. Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile. Glob Planet Change, 78: 147–161

    Google Scholar 

  • Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol, 114: 289–302

    Google Scholar 

  • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715–717

    Google Scholar 

  • Pang J L, Huang C C, Zhang Z P. 2001. Rb, Sr elements and high-resolution climatic records in the loess-paleosol profile at Qishan, Shaanxi (in Chinese). Acta Sedimentol Sin, 19: 637–641

    Google Scholar 

  • Ren W H. 2020. The vegetation and climate changes of the eastern Tibetan Plateau since the last interglacial. Doctoral Dissertation. Beijing: University of Chinese Academy of Sciences

    Google Scholar 

  • Ren X P, Nie J S, Saylor J E, Li H, Bush M A, Horton B K. 2019. Provenance control on chemical weathering index of fluvio-lacustrine sediments: Evidence from the Qaidam Basin, NE Tibetan Plateau. Geochem Geophys Geosyst, 20: 3216–3224

    Google Scholar 

  • Richter T O, Van der Gaast S, Koster B, Vaars A, Gieles R, De Stigter H, De Haas H, van Weering T C E. 2006. The Avaatech XRF core scanner: Technical description and applications to NE Atlantic sediments. In: Rothwell R G, ed. New Techniques in Sediment Core Analysis. London: Geological Society. 39–50

    Google Scholar 

  • Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New Jersey: Pearson Education. 37–41

    Google Scholar 

  • Shen C M, Liu K B, Tang L Y, Overpeck J T. 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Rev Palaeobot Palynol, 140: 61–77

    Google Scholar 

  • Shen C M, Tang L Y, Wang S M, Li C H, Liu K. 2005. Pollen records and time scale for the RM core of the Zoige Basin, northeastern Qinghai-Tibetan Plateau. Chin Sci Bull, 50: 553–562

    Google Scholar 

  • Shen H Y, Jia Y L, Li X S, Wu J L, Wei L, Wang P L. 2006. Environmental change inferred from distribution of Rb and Sr in different grain size fractions from lacustrine sediments in Huangqihai Lake, Inner Mongolia (in Chinese). Acta Geogr Sin, 61: 1208–1217

    Google Scholar 

  • Sheng H Y. 2007. Late Neogene geology and environment evolution at Zoigê Basin of northeast margin of Qinghai-Tibet Plateau. Doctoral Dissertation. Chengdu: Chengdu University of Technology

    Google Scholar 

  • Si Y J, Li B S, Zhang D D, Wen X H, Wang F N, Du S H, Niu D F, Guo Y H. 2014. Climate fluctuation on a kiloyear scale during the Late Last Glacial in Mu Us Desert, China: Evidence from Rb and Sr contents and ratios. Environ Earth Sci, 72: 4521–4530

    Google Scholar 

  • Sun G Y, Luo X Z, Turner R E. 2001. A study on peat deposition chronology of Holocene of Zoige Plateau in the northeast Qinghai Tibetan plateau (in Chinese). Acta Sedimentol Sin, 19: 177–181

    Google Scholar 

  • Sun J M. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet Sci Lett, 203: 845–859

    Google Scholar 

  • Vane C H, Kim A W, Moss-Hayes V, Snape C E, Diaz M C, Khan N S, Engelhart S E, Horton B P. 2013a. Degradation of mangrove tissues by arboreal termites (Nasutitermes acajutlae) and their role in the mangrove C cycle (Puerto Rico): Chemical characterization and organic matter provenance using bulk δ13C, C/N, alkaline CuO oxidation-GC/MS, and solid-state. Geochem Geophys Geosyst, 14: 3176–3191

    Google Scholar 

  • Vane C H, Rawlins B G, Kim A W, Moss-Hayes V, Kendrick C P, Leng M J. 2013b. Sedimentary transport and fate of polycyclic aromatic hydrocarbons (PAH) from managed burning of moorland vegetation on a blanket peat, South Yorkshire, UK. Sci Total Environ, 449: 81–94

    Google Scholar 

  • Volborth A. 1969. Elemental Analysis in Geochemistry—A: Major Elements. Amsterdam: Elsevier Publishing Company. 7

  • Wang F B, Han H Y, Yan G, Cao Q Y, Zhou W J, Li S F, Donahue D J. 1996. Paleovegetational and paleoclimatic evolution series on northeastern Qinghai-Xizang Plateau in the last 30 ka (in Chinese). Sci China Ser D-Earth Sci, 26: 111–117

    Google Scholar 

  • Wang F B, Yan G, Lin B H. 1993. Organic carbon stable isotopic composition from peat in Ruoergai Plateau, eastern part of Qinghai-Xizang Plateau (in Chinese). Chin Sci Bull, 38: 65–67

    Google Scholar 

  • Wang H, Hong Y T, Zhu Y X, Hong B, Lin Q H, Xu H, Leng X T, Mao X M. 2004. Paleoclimatic significance of humification degree of peat in the Tibetan Plateau. Chin Sci Bull, 49: 686–691

    Google Scholar 

  • Wang Q F, Jin H J, Huang Y D. 2018. Mid-late Holocene Asian monsoon evolution indicated by peat deposits in the source area of the Yellow River, northeastern Tibetan Plateau. Theor Appl Climatol, 134: 499–512

    Google Scholar 

  • Wang S, Xue B. 1997. Environmental evolution of Zoigê Basin since 900 ka B.P. and comparison study with Loess Plateau. Sci China Ser D-Earth Sci, 40: 329–336

    Google Scholar 

  • Wang Y F, Wang S M, Xia W L. 1995a. Sedimentary mineralogy and environment interpretation of core RH from Zoige Basin. In: The Steering Commission of Qinghai-Xizang Program, eds. The Evolution, Environmental Change and Ecosystem Study of Qinghai-Xizang Plateau (in Chinese). Beijing: Science Press. 189–198

    Google Scholar 

  • Wang Y F, Wang S M, Xue B, Ji L, Wu J L, Xia W L, Pan H X, Zhang P Z, Chen F H. 1995b. Sedimentological evidence of the piracy of fossil Zoige lake by the Yellow River. Chin Sci Bull, 40: 1539–1544

    Google Scholar 

  • Wang Y, Zhao Z Z, Qiao Y S, Wang S B, Li C Z, Song L F. 2006. Paleoclimatic and paleoenvironmental evolution since the late glacial epoch as recorded by sporopollen from the Hongyuan peat section on the Zoige Plateau, northern Sichuan, China (in Chinese). Geol Bull Chin, 25: 827–832

    Google Scholar 

  • Wedepohl K H. 1978. Handbook of Geochemistry II-4. Berlin: Springer-Verlag. 38–D–1–38–D–17

    Google Scholar 

  • Wehausen R, Brumsack H J. 2000. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeogr Palaeoclimatol Palaeoecol, 158: 325–352

    Google Scholar 

  • Wen X Y, Chen M L, Feng W L, Huang C M. 2017. Mid-late Holocene climatic changes recorded by loess deposits in the eastern margin of the Tibetan Plateau: Implication for human migrations. Quat Int, 441: 77–88

    Google Scholar 

  • Wennrich V, Minyuk P S, Borkhodoev V, Francke A, Ritter B, Nowaczyk N R, Sauerbrey M A, Brigham-Grette J, Melles M. 2014. Pliocene to Pleistocene climate and environmental history of Lake El’gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data. Clim Past, 10: 1381–1399

    Google Scholar 

  • Wu J, Wang S, Shi Y, Ji L. 2000. Temperature estimation by oxygen-stable record over the past 200 ka in Zoigê basin. Sci China Ser D-Earth Sci, 43: 577–586

    Google Scholar 

  • Wu Y H, Lücke A, Jin Z D, Wang S M, Schleser G H, Battarbee R W, Xia W L. 2006. Holocene climate development on the central Tibetan Plateau: A sedimentary record from Cuoe Lake. Palaeogeogr Palaeoclimatol Palaeoecol, 234: 328–340

    Google Scholar 

  • Xiong S F, Ding Z L, Zhu Y J, Zhou R, Lu H J. 2010. A ∼6 Ma chemical weathering history, the grain size dependence of chemical weathering intensity, and its implications for provenance change of the Chinese loess-red clay deposit. Quat Sci Rev, 29: 1911–1922

    Google Scholar 

  • Xu H, Zhou X Y, Lan J H, Liu B, Sheng E G, Yu K K, Cheng P, Wu F, Hong B, Yeager K M, Xu S. 2017. Late Holocene Indian summer monsoon variations recorded at Lake Erhai, Southwestern China. Quat Res, 83: 307–314

    Google Scholar 

  • Xu M Q. 1988. An outline of the Quaternary environmental evolution of the Roer Gai Plateau in northwestern Sichuan (in Chinese). J Southwest China Teachers Univ, 4: 94–100

    Google Scholar 

  • Xue B, Wang S, Xia W, Wu J, Wang Y, Qian J, Hu S, Wu Y, Zhang P. 1998. The uplifting and environmental change of Qinghai-Xizang (Tibetan) Plateau in the past 0.9 Ma inferred from core RM of Zoige Basin. Sci China Ser D-Earth Sci, 41: 165–170

    Google Scholar 

  • Ye D Z, Gao Y X. 1979. Meteorology of the Qinghai-Xizang (Tibet) Plateau (in Chinese). Beijing: Science Press. 62–73

    Google Scholar 

  • Yu X, Zhou W, Franzen L G, Xian F, Cheng P, Jull A J T. 2006. High-resolution peat records for Holocene monsoon history in the eastern Tibetan plateau. Sci China Ser D-Earth Sci, 49: 615–621

    Google Scholar 

  • Zeng Y, Chen J A, Zhu Z J, Li J. 2011. Advance and prospective of Rb/Sr ratios in lake sediments as an index of paleoclimate/paleoenvironment (in Chinese). Adv Earth Sci, 26: 805–810

    Google Scholar 

  • Zhang H C. 1997. The Characteristics and Theoretical Basis of Supergene Geochemistry of Elements (in Chinese). Lanzhou: Lanzhou University Press. 258–262

    Google Scholar 

  • Zhao Y, Tang Y, Yu Z C, Li H, Yang B, Zhao W W, Li F R, Li Q. 2014. Holocene peatland initiation, lateral expansion, and carbon dynamics in the Zoige Basin of the eastern Tibetan Plateau. Holocene, 24: 1137–1145

    Google Scholar 

  • Zhao Y, Tzedakis P C, Li Q, Qin F, Cui Q Y, Liang C, Birks H J B, Liu Y L, Zhang Z Y, Ge J Y, Zhao H, Felde V A, Deng C L, Cai M T, Li H, Ren W H, Wei H C, Yang H F, Zhang J W, Yu Z C, Guo Z T. 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci Adv, 6: eaay6193

    Google Scholar 

  • Zhou W J, Lu X F, Wu Z K, Deng L, Jull A J T, Donhaue D, Beck W. 2001. Holocene peat record of climate change in the Zoige plateau by accelerator radiocarbon dating (in Chinese). Chin Sci Bull, 46: 1040–1044

    Google Scholar 

Download references

Acknowledgements

We acknowledge the two anonymous reviewers for their constructive comments and suggestions. We thank Bin HU, Dandan SUN, Xinhang WANG, Huiyang ZHOU, Chenhui HU, Liwen PENG, and Weiling ZU for their assistance in the laboratory. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20070101), the National Natural Science Foundation of China (Grant Nos. 41690113 & 41888101), and the National Key Research and Development Program of China (Grant No. 2016YFA0600501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoyu Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhao, Y., Cui, Q. et al. Paleoclimatic indication of X-ray fluorescence core-scanned Rb/Sr ratios: A case study in the Zoige Basin in the eastern Tibetan Plateau. Sci. China Earth Sci. 64, 80–95 (2021). https://doi.org/10.1007/s11430-020-9667-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9667-7

Keywords

Navigation