Skip to main content
Log in

Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Adakitic rocks are intermediate-acid magmatic rocks characterized by enrichment in light rare-earth elements, depletion in heavy rare-earth elements, positive to negligible Eu and Sr anomalies, and high La/Yb and Sr/Y ratios. Cenozoic adakitic rocks generated by partial melting of subducted oceanic crust (slab) under eclogite-facies conditions (i.e., the original definition of “adakite”) occur mainly in Pacific Rim volcanic arcs (intra-oceanic, continental, and continental-margin island arcs), whereas those generated by partial melting of thickened lower crust occur mainly in Tethyan Tibetan collisional orogens. In volcanic arcs, adakitic melts derived from the melting of subducted oceanic crust metasomatize the mantle wedge to form a unique rock suite comprising adakite-adakite-type high-Mg andesite-Piip-type high-Mg andesite-Nb-rich basalt-boninite. This suite differs from the basalt-andesite-dacite-rhyolite suite formed from mantle wedge metasomatized by fluids derived from subducted oceanic crust. Previously published data indicate that partial melting of mafic rocks can generate adakitic magmas under pressure, temperature, and hydrous conditions of 1.2–3.0 GPa, 800–1000°C, and 1.5–6.0 wt.% H2O, respectively, leaving residual minerals of garnet and rutile with little or no plagioclase. Cenozoic Au and Cu deposits occur proximally to adakitic rocks, with host rocks of some deposits actually being adakitic rocks. Adakitic rocks thus have important implications for both deep-Earth dynamics and Cu-Au mineralization/exploration. Although studies of Cenozoic adakitic rocks have made many important advances, there remain weaknesses in some important areas such as their tectonic settings, petrogenesis, magma sources, melt-mantle interactions of pre-Cenozoic adakitic rocks, and their relationship with the onset of plate tectonics and crustal growth. Future research directions are likely to involve (1) the generation of adakitic magmas by experimental simulations of partial melting of different types of rock (including intermediate-acid rocks) and magma fractional crystallization at different temperatures and pressures, (2) the relationship between magma reservoir evolution and the formation of adakitic rocks, (3) the tectonic setting and petrogenesis of pre-Cenozoic adakitic rocks and related geodynamic processes, (4) interactions between slab melts and the mantle wedge, (5) the formation of Archean adakitic tonalite-trondhjemite-granodiorite and its link to the onset of plate tectonics and crustal growth, and (6) the relationship between the formation of adakitic rocks and metal mineralization in different tectonic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abratis M, Wörner G. 2001. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology, 29: 127–130

    Google Scholar 

  • Arth J G, Hanson G N. 1972. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths. Contrib Mineral Petrol, 37: 161–174

    Google Scholar 

  • Arth J G, Hanson G N. 1975. Geochemistry and origin of the early Pre-cambrian crust of northeastern Minnesota. Geochim Cosmochim Acta, 39: 325–362

    Google Scholar 

  • Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144–146

    Google Scholar 

  • Audétat A. Simon A C. 2012. Magmatic controls on porphyry copper genesis. In: Hedenquist J W, Harris M, Camus F, eds. Geology and Genesis of Major Copper Deposits and Districts of the world: A Tribute to Richard H. Sillitoe. Society of Economic Geologists, Special Publication, 16: 553–572

  • Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth’s crust. Am Miner, 101: 2377–2404

    Google Scholar 

  • Baker M B, Hirschmann M M, Ghiorso M S, Stolper E M. 1995. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature, 375: 308–311

    Google Scholar 

  • Baker M B, Stolper E M. 1994. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta, 58: 2811–2827

    Google Scholar 

  • Beard B L, Fraracci K N, Clayton R A, Mayeda T K, Snyder G A, Sobolev N V, Taylor L A. 1996. Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petrol, 125: 293–310

    Google Scholar 

  • Beate B, Monzier M, Spikings R, Cotten J, Silva J, Bourdon E, Eissen J P. 2001. Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: The Quimsacocha volcanic center. Earth Planet Sci Lett, 192: 561–570

    Google Scholar 

  • Benoit M, Aguillón-Robles A, Calmus T, Maury R C, Bellon H, Cotten J, Bourgois J, Michaud F. 2002. Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: Implication of mantle and crustal sources during the opening of an asthenospheric window. J Geol, 110: 627–648

    Google Scholar 

  • Bourdon E, Eissen J P, Gutscher M A, Monzier M, Hall M L, Cotten J. 2003. Magmatic response to early aseismic ridge subduction: The Ecuadorian margin case (South America). Earth Planet Sci Lett, 205: 123–138

    Google Scholar 

  • Bourdon E, Eissen J, Monzier M, Robin C, Martin H, Cotten J, Hall M L. 2002. Adakite-like Lavas from Antisana Volcano (Ecuador): Evidence for Slab Melt Metasomatism Beneath Andean Northern Volcanic Zone. J Petrol, 43: 199–217

    Google Scholar 

  • Bourgois J, Lagabrielle Y, Martin H, Dyment J, Frutos J, Cisternas M E. 2016. A review on Forearc ophiolite obduction, adakite-like generation, and slab window development at the Chile Triple Junction area: Uniformitarian framework for spreading-ridge subduction. Pure Appl Geophys, 173: 3217–3246

    Google Scholar 

  • Breitfeld H T, Macpherson C, Hall R, Thirlwall M, Ottley C J, Hennig-Breitfeld J. 2019. Adakites without a slab: Remelting of hydrous basalt in the crust and shallow mantle of Borneo to produce the Miocene Sintang Suite and Bau Suite magmatism of West Sarawak. Lithos, 344–345: 100–121

    Google Scholar 

  • Breitsprecher K, Thorkelson D J. 2009. Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464: 10–20

    Google Scholar 

  • Cameron W E, Nisbet E G, Dietrich V J. 1979. Boninites, komatiites and ophiolitic basalts. Nature, 280: 550–553

    Google Scholar 

  • Cashman K V, Giordano G. 2014. Calderas and magma reservoirs. J Volcanol Geotherm Res, 288: 28–45

    Google Scholar 

  • Castillo P R. 2006. An overview of adakite petrogenesis. Chin Sci Bull, 51: 257–268

    Google Scholar 

  • Castillo P R, Rigby S J, Solidum R U. 2007. Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines. Lithos, 97: 271–288

    Google Scholar 

  • Castillo P R. 2012. Adakite petrogenesis. Lithos, 134–135: 304–316

    Google Scholar 

  • Castillo P R. 2008. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geol Soc Am Bull, 120: 451–462

    Google Scholar 

  • Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol, 134: 33–51

    Google Scholar 

  • Chen D L, Liu L, Sun Y, Sun W D, Zhu X H, Liu X M, Guo C L. 2012. Felsic veins within UHP eclogite at xitieshan in north qaidam, NW China: Partial melting during exhumation. Lithos, 136–139: 187–200

    Google Scholar 

  • Chiaradia M. 2009. Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chem Geol, 265: 468–487

    Google Scholar 

  • Chiaradia M. 2014. Copper enrichment in arc magmas controlled by overriding plate thickness. Nat Geosci, 7: 43–46

    Google Scholar 

  • Chiaradia M, Caricchi L. 2017. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. Sci Rep, 7: 44523

    Google Scholar 

  • Chung S L, Chu M F, Ji J, O’Reilly S Y, Pearson N J, Liu D, Lee T Y, Lo C H. 2009. The nature and timing of crustal thickening in southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477: 36–48

    Google Scholar 

  • Chung S L, Liu D, Ji J, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021–1024

    Google Scholar 

  • Chung S L, Chu M F, Zhang Y, Xie Y, Lo C H, Lee T Y, Lan C Y, Li X, Zhang Q, Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 68: 173–196

    Google Scholar 

  • Coldwell B, Adam J, Rushmer T, MacPherson C G. 2011. Evolution of the East Philippine Arc: Experimental constraints on magmatic phase relations and adakitic melt formation. Contrib Mineral Petrol, 162: 835–848

    Google Scholar 

  • Cole R B, Stewart B W. 2009. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics, 464: 118–136

    Google Scholar 

  • Condie K C. 1981. Archean Greenstone Belts. Amsterdam: Elsevier. 434

    Google Scholar 

  • Condie K C. 2005. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos, 79: 491–504

    Google Scholar 

  • Conrey R M, Hooper P R, Larson P B, Chesley J, Ruiz J. 2001. Trace element and isotopic evidence for two types of crustal melting beneath a high Cascade volcanic center, Mt. Jefferson, Oregon. Contrib Mineral Petrol, 141: 710–732

    Google Scholar 

  • Dai H K, Zheng J, Zhou X, Griffin W L. 2017. Generation of continental adakitic rocks: Crystallization modeling with variable bulk partition coefficients. Lithos, 272–273: 222–231

    Google Scholar 

  • Danyushevsky L V, Falloon T J, Crawford A J, Tetroeva S A, Leslie R L, Verbeeten A. 2008. High-Mg adakites from Kadavu Island Group, Fiji, southwest Pacific: Evidence for the mantle origin of adakite parental melts. Geology, 36: 499–502

    Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Google Scholar 

  • Defant M J, Jackson T E, Drummond M S, de Boer J Z, Bellon H, Feigenson M D, Maury R C, Stewart R H. 1992. The geochemistry of young volcanism throughout Western Panama and Southeastern Costa Rica: An overview. J Geol Soc, 149: 569–579

    Google Scholar 

  • Defant M J, Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. Eos Trans AGU, 82: 65–68

    Google Scholar 

  • Defant M J, Richerson P M, de Boer J Z, Stewart R H, Maury R C, Bellon H, Drummond M S, Feigenson M D, Jackson T E. 1991. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada Volcanic Complex, Panama. J Petrol, 32: 1101–1142

    Google Scholar 

  • Defant M J, Xu J F, Kepezhinskas P, Wang Q, Zhang Q, Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrol Sin, 18: 129–142

    Google Scholar 

  • Dokuz A, Uysal İ, Siebel W, Turan M, Duncan R, Akçay M. 2013. Post-collisional adakitic volcanism in the eastern part of the Sakarya Zone, Turkey: Evidence for slab and crustal melting. Contrib Mineral Petrol, 166: 1443–1468

    Google Scholar 

  • Drummond M S, Defant M J. 1990. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res, 95: 21503–21521

    Google Scholar 

  • Edmonds M, Cashman K V, Holness M, Jackson M. 2019. Architecture and dynamics of magma reservoirs. Phil Trans R Soc A, 377: 20180298

    Google Scholar 

  • Falloon T J, Danyushevsky L V, Crawford A J, Meffre S, Woodhead J D, Bloomer S H. 2008. Boninites and adakites from the Northern Termination of the Tonga Trench: Implications for adakite petrogenesis. J Petrol, 49: 697–715

    Google Scholar 

  • Ferrero S, Wunder B, Walczak K, O’Brien P J, Ziemann M A. 2015. Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology, 43: 447–450

    Google Scholar 

  • Franz G, Smelik E A. 1995. Zoisite-clinozoisite bearing pegmatites and their importance for decompressional melting in eclogites. Eur J Mineral, 7: 1421–1436

    Google Scholar 

  • Frisch W, Meschede M, Blakey R. 2011. Plate Tectonics: Continental Drift and Mountain Building. Berlin, Heidelberg: Springer. 212

    Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Google Scholar 

  • Gao X Y, Zheng Y F, Chen Y X, Hu Z. 2013. Trace element composition of continentally subducted slab-derived melt: Insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorph Geol, 31: 453–468

    Google Scholar 

  • Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorph Geol, 30: 193–212

    Google Scholar 

  • Gao Y, Hou Z, Kamber B S, Wei R, Meng X, Zhao R. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contrib Mineral Petrol, 153: 105–120

    Google Scholar 

  • Garrido C J, Bodinier J L, Burg J P, Zeilinger G, Hussain S S, Dawood H, Chaudhry M N, Gervilla F. 2006. Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): Implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol, 47: 1873–1914

    Google Scholar 

  • Gazel E, Hayes J L, Hoernle K, Kelemen P, Everson E, Holbrook W S, Hauff F, van den Bogaard P, Vance E A, Chu S, Calvert A J, Carr M J, Yogodzinski G M. 2015. Continental crust generated in oceanic arcs. Nat Geosci, 8: 321–327

    Google Scholar 

  • Ge R, Zhu W, Wilde S A, Wu H. 2018. Remnants of eoarchean continental crust derived from a subducted proto-arc. Sci Adv, 4: eaao3159

    Google Scholar 

  • Ge X, Li X, Chen Z, LI W. 2002. Geochemistry and petrogenesis of Jurassic high Sr/low Y granitoids in eastern China: Constrains on crustal thickness. Chin Sci Bull, 47: 962–968

    Google Scholar 

  • Gill J B. 1981. Orogenic Andesite and Plate Tectonics. Berlin: Springer

    Google Scholar 

  • Goss A R, Kay S M. 2006. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem Geophys Geosyst, 7: Q05016

    Google Scholar 

  • Goss A R, Kay S M, Mpodozis C. 2013. Andean adakite-like high-Mg andesites on the northern margin of the Chilean-Pampean Flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J Petrol, 54: 2193–2234

    Google Scholar 

  • Green T H, Ringwood A E. 1968. Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol, 18: 105–162

    Google Scholar 

  • Gromet P, Silver L T. 1987. REE variations across the peninsular ranges batholith: Implications for batholithic petrogenesis and crustal growth in magmatic arcs. J Petrol, 28: 75–125

    Google Scholar 

  • Guo F, Nakamuru E, Fan W M, Kobayoshi K, Li C W. 2007. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China. J Petrol, 48: 661–692

    Google Scholar 

  • Guo Z, Wilson M, Liu J. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205–224

    Google Scholar 

  • Gutscher M A, Maury R, Eissen J P, Bourdon E. 2000. Can slab melting be caused by flat subduction? Geology, 28: 535–538

    Google Scholar 

  • Harris N R, Sisson V B, Wright J E, Pavlis T L. 1996. Evidence for Eocene mafic underplating during fore-arc intrusive activity, eastern Chugach Mountains, Alaska. Geology, 24: 263–264

    Google Scholar 

  • Hastie A R, Fitton J G, Mitchell S F, Neill I, Nowell G M, Millar I L. 2015. Can fractional crystallization, mixing and assimilation processes be responsible for Jamaican-type adakites? Implications for generating Eoarchaean continental crust. J Petrol, 56: 1251–1284

    Google Scholar 

  • Hastie A R, Kerr A C, McDonald I, Mitchell S F, Pearce J A, Wolstencroft M, Millar I L. 2010. Do Cenozoic analogues support a plate tectonic origin for Earth’s earliest continental crust? Geology, 38: 495–498

    Google Scholar 

  • Hao L L, Wang Q, Zhang C, Ou Q, Yang J H, Dan W, Jiang Z Q. 2019. Oceanic plateau subduction during closure of the Bangong-Nujiang Tethyan Ocean: Insights from central Tibetan volcanic rocks. Geol Soc Am Bull, 131: 864–880

    Google Scholar 

  • He Y S, Wu H, Ke S, Liu S A, Wang Q. 2017. Iron isotopic compositions of adakitic and non-adakitic granitic magmas: Magma compositional control and subtle residual garnet effect. Geochim Cosmochim Acta, 203: 89–102

    Google Scholar 

  • He Y, Li S G, Hoefs J, Huang F, Liu S A, Hou Z. 2011. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta, 75: 3815–3838

    Google Scholar 

  • Hernández-Uribe D, Hernández-Montenegro J D, Cone K A, Palin R M. 2020. Oceanic slab-top melting during subduction: Implications for trace-element recycling and adakite petrogenesis. Geology, 48: 216–220

    Google Scholar 

  • Hedenquist J W, Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519–527

    Google Scholar 

  • Hermann J, Zheng Y F, Rubatto D. 2013. Deep fluids in subducted continental crust. Elements, 9: 281–287

    Google Scholar 

  • Hirose K. 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25: 42–44

    Google Scholar 

  • Hirose K, Kawamoto T. 1995. Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett, 133: 463–473

    Google Scholar 

  • Hirose K, Kushiro I. 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett, 114: 477–489

    Google Scholar 

  • Hirose K, Kushiro I. 1998. The effect of melt segregation on polybaric mantle melting: Estimation from the incremental melting experiments. Phys Earth Planet Inter, 107: 111–118

    Google Scholar 

  • Holwell D A, Fiorentini M, McDonald I, Lu Y, Giuliani A, Smith D J, Keith M, Locmelis M. 2019. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat Commun, 10: 1

    Google Scholar 

  • Horodyskyj U N, Lee C T A, Ducea M N. 2007. Similarities between Archean high MgO eclogites and Phanerozoic arc-eclogite cumulates and the role of arcs in Archean continent formation. Earth Planet Sci Lett, 256: 510–520

    Google Scholar 

  • Hou Z Q. 2010. Metallogensis of continental collision. Acta Petrol Sin, 84: 30–58

    Google Scholar 

  • Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139–155

    Google Scholar 

  • Hou Z Q, Zheng Y C, Zeng L S, Gao L E, Huang K X, Li W, Li Q Y, Fu Q, Liang W, Sun Q Z. 2012. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet Sci Lett, 349–350: 38–52

    Google Scholar 

  • Hou Z, Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol Rev, 36: 2–24

    Google Scholar 

  • Hou Z, Yang Z, Lu Y, Kemp A, Zheng Y, Li Q, Tang J, Yang Z, Duan L. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43: 247–250

    Google Scholar 

  • Hou Z, Yang Z, Qu X, Meng X, Li Z, Beaudoin G, Rui Z, Gao Y, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev, 36: 25–51

    Google Scholar 

  • Hu P, Cao L, Zhang H, Yang Q, Armin T, Cheng X. 2019. Late Miocene adakites associated with the Tangse porphyry Cu-Mo deposit within the Sunda arc, north Sumatra, Indonesia. Ore Geol Rev, 111: 102983

    Google Scholar 

  • Huang J, Zhang X C, Chen S, Tang L, Wörner G, Yu H, Huang F. 2018. Zinc isotopic systematics of Kamchatka-Aleutian arc magmas controlled by mantle melting. Geochim Cosmochim Acta, 238: 85–101

    Google Scholar 

  • Ickert R B, Thorkelson D J, Marshall D D, Ullrich T D. 2009. Eocene adakitic volcanism in southern British Columbia: Remelting of arc basalt above a slab window. Tectonophysics, 464: 164–185

    Google Scholar 

  • Ireland T R, Rudnick R L, Spetsius Z. 1994. Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet Sci Lett, 128: 199–213

    Google Scholar 

  • Ishizuka O, Kimura J I, Li Y B, Stern R J, Reagan M K, Taylor R N, Ohara Y, Bloomer S H, Ishii T, Hargrove U S, Haraguchi S. 2006. Early stages in the evolution of Izu-Bonin arc volcanism: New age, chemical, and isotopic constraints. Earth Planet Sci Lett, 250: 385–401

    Google Scholar 

  • Ishizuka O, Tani K, Reagan M K, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M, Dunkley D J. 2011. The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet Sci Lett, 306: 229–240

    Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G. 1995. Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochim Cosmochim Acta, 58: 5191–5207

    Google Scholar 

  • Jahangiri A. 2007. Post-collisional Miocene adakitic volcanism in NW Iran: Geochemical and geodynamic implications. J Asian Earth Sci, 30: 433–447

    Google Scholar 

  • Jiang N, Liu Y, Zhou W, Yang J, Zhang S. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta, 71: 2591–2608

    Google Scholar 

  • Jiang Z Q, Wang Q, Wyman D A, Li Z X, Yang J H, Shi X B, Ma L, Tang G J, Gou G N, Jia X H, Guo H F. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (∼91–30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196–197: 213–231

    Google Scholar 

  • Johnson T E, Brown M, Gardiner N J, Kirkland C L, Smithies R H. 2017. Earth’s first stable continents did not form by subduction. Nature, 543: 239–242

    Google Scholar 

  • Johnson T E, Fischer S, White R W, Brown M, Rollinson H R. 2012. Archaean intracrustal differentiation from partial melting of metagabbro—Field and geochemical evidence from the central region of the Lewisian Complex, NW Scotland. J Petrol, 53: 2115–2138

    Google Scholar 

  • Kamei A, Miyake Y, Owada M, Kimura J I. 2009. A pseudo adakite derived from partial melting of tonalitic to granodioritic crust, Kyushu, southwest Japan arc. Lithos, 112: 615–625

    Google Scholar 

  • Kawamoto T, Kanzaki M, Mibe K, Matsukage K N, Ono S. 2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proc Natl Acad Sci USA, 109: 18695–18700

    Google Scholar 

  • Kay R W. 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res, 4: 117–132

    Google Scholar 

  • Kay R W, Mahlburg S. 1991. Creation and destruction of lower continental crust. Geol Rundsch, 80: 259–278

    Google Scholar 

  • Kay R W, Mahlburg S. 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177–189

    Google Scholar 

  • Kay S M, Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11: 4–9

    Google Scholar 

  • Kay S M, Ramos V A, Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in Southern South America. J Geol, 101: 703–714

    Google Scholar 

  • Kepezhinskas P K, Defant M J, Drummond M S. 1995. Na metasomatism in the island arc mantle by slab melt-peridotite interaction: Evidence from mantle xenoliths in the North Kamchatka arc. J Petrol, 36: 1505–1527

    Google Scholar 

  • Kepezhinskas P, McDermott F, Defant M J, Hochstaedter A, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C, Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61: 577–600

    Google Scholar 

  • Kepezhinskas P, Defant M J. 1996. Contrasting styles of mantle metasomatism above subduction zones: Constraints from ultramafic xenoliths in Kamchatka. In: Bebout G E, Scholl D W, Kirby S H, Platt J P, eds. Subduction: Top to Bottom. AGU Geophysical Monograph, 96: 307–314

  • Kerrich R, Wyman D, Fan J, Bleeker W. 1998. Boninite series: Low Titholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth Planet Sci Lett, 164: 303–316

    Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727

    Google Scholar 

  • Kikuchi Y. 1890. On pyorxene components in certain volcanic rocks from Bonin Island. J Coll Sci Imp Univ, Jpn, 3: 67–89

    Google Scholar 

  • König S, Schuth S, Münker C, Qopoto C. 2007. The role of slab melting in the petrogenesis of high-Mg andesites: Evidence from Simbo Volcano, Solomon Islands. Contrib Mineral Petrol, 153: 85–103

    Google Scholar 

  • Kushiro I. 1996. Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. In: Basu A, Hart S R, eds. Earth Processes: Reading the Isotopic Code. Washington DC: American Geophysical Union. 109–122

    Google Scholar 

  • Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol, 27: 745–750

    Google Scholar 

  • Le Bas M J. 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol, 41: 1467–1470

    Google Scholar 

  • Lee C, King S D. 2010. Why are high-Mg# andesites widespread in the western Aleutians? A numerical model approach. Geology, 38: 583–586

    Google Scholar 

  • Lee C T A, Tang M. 2020. How to make porphyry copper deposits. Earth Planet Sci Lett, 529: 115868

    Google Scholar 

  • Le Maitre R W. 2002. Igneous Rocks: A Classification and Glossary of Terms. 2nd ed. Cambridge: Cambridge University Press. 1–232

    Google Scholar 

  • Li J W, Zhao X F, Zhou M F, Ma C Q, de Souza Z S, Vasconcelos P. 2009. Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis, and geodynamic implications. Contrib Mineral Petrol, 157: 383–409

    Google Scholar 

  • Li X H, Li Z X, Li W X, Wang X C, Gao Y. 2013. Revisiting the “C-type adakites” of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf-O isotope and geochemical constraints. Chem Geol, 345: 1–15

    Google Scholar 

  • Li Y B, Kimura J I, Machida S, Ishii T, Ishiwatari A, Maruyama S, Qiu H N, Ishikawa T, Kato Y, Haraguchi S, Takahata N, Hirahara Y, Miyazaki T. 2013. High-Mg adakite and low-Ca boninite from a Bonin Fore-arc seamount: Implications for the reaction between slab melts and depleted mantle. J Petrol, 54: 1149–1175

    Google Scholar 

  • Liebscher A, Franz G, Frei D, Dulski P. 2007. High-pressure melting of eclogite and the P-T-X history of tonalitic to trondhjemitic zoisitepegmatites, Munchberg Massif, Germany. J Petrol, 48: 1001–1019

    Google Scholar 

  • Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W. 2009. Cretaceous ridge subduction along the Lower Yangtze river belt, eastern China. Econ Geol, 104: 303–321

    Google Scholar 

  • Liu D, Zhao Z, DePaolo D J, Zhu D C, Meng F Y, Shi Q, Wang Q. 2017. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle-crust interaction and mass transfer from Indian plate. Lithos, 268–271: 48–64

    Google Scholar 

  • Liu S A, Li S, He Y, Huang F. 2010. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochim Cosmochim Acta, 74: 7160–7178

    Google Scholar 

  • Long X, Wilde S A, Wang Q, Yuan C, Wang X C, Li J, Jiang Z, Dan W. 2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth Planet Sci Lett, 414: 30–44

    Google Scholar 

  • López-Escobar L, Frey F A, Oyarzun J. 1979. Geochemical characteristics of central Chile (33°-34°S) granitoids. Contrib Mineral Petrol, 70: 439–450

    Google Scholar 

  • López-Escobar L, Frey F A, Vergara M. 1977. Andesites and high-alumina Basalts from the Central-South Chile high Andes: Geochemical evidence bearing on their petrogenesis. Contrib Mineral Petrol, 63: 199–228

    Google Scholar 

  • Loucks R R. 2014. Distinctive composition of copper-ore-forming arcmagmas. Australian J Earth Sci, 61: 5–16

    Google Scholar 

  • Lu Y J, Loucks R R, Fiorentini M L, Yang Z M, Hou Z Q. 2015. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet. Geology, 43: 583–586

    Google Scholar 

  • Ma L, Wang B D, Jiang Z Q, Wang Q, Li Z X, Wyman D A, Zhao S R, Yang J H, Gou G N, Guo H F. 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196–197: 321–338

    Google Scholar 

  • Ma Q, Xu Y G, Zheng J P, Sun M, Griffin W L, Wei Y, Ma L, Yu X. 2016. High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber. Lithos, 260: 211–224

    Google Scholar 

  • Ma Q, Zheng J, Griffin W L, Zhang M, Tang H, Su Y, Ping X. 2012. Triassic “adakitic” rocks in an extensional setting (North China): Melts from the cratonic lower crust. Lithos, 149: 159–173

    Google Scholar 

  • Ma Q, Zheng J P, Xu Y G, Griffin W L, Zhang R S. 2015. Are continental “adakites” derived from thickened or foundered lower crust? Earth Planet Sci Lett, 419: 125–133

    Google Scholar 

  • Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett, 243: 581–593

    Google Scholar 

  • Marchev P, Georgiev S, Raicheva R, Peytcheva I, von Quadt A, Ovtcharova M, Bonev N. 2013. Adakitic magmatism in post-collisional setting: An example from the Early-Middle Eocene Magmatic Belt in Southern Bulgaria and Northern Greece. Lithos, 180–181: 159–180

    Google Scholar 

  • Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14: 753–756

    Google Scholar 

  • Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429

    Google Scholar 

  • Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24

    Google Scholar 

  • Martínez-Serrano R G, Schaaf P, Solís-Pichardo G, Hernández-Bernal M S, Hernández-Treviño T, Julio Morales-Contreras J, Macías J L. 2004. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico. J Volcanol Geotherm Res, 138: 77–110

    Google Scholar 

  • Maury R C, Calmus T, Pallares C, Benoit M, Gregoire M, Aguillon-Robles A, Bellon H, Bohn M. 2009. Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico: Discussion. Geol Soc Am Bull, 121: 1465–1469

    Google Scholar 

  • McGeary S, Nur A, Ben-Avraham Z. 1985. Spatial gaps in arc volcanism: The effect of collision or subduction of oceanic plateaus. Tectonophysics, 119: 195–221

    Google Scholar 

  • McCarron J J, Smellie J L. 1998. Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica. J Geol Soc, 155: 269–280

    Google Scholar 

  • MacGregor I D, Manton W I. 1986. Roberts Victor Eclogites: Ancient oceanic crust. J Geophys Res, 91: 14063–14079

    Google Scholar 

  • Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc Natl Acad Sci USA, 108: 8177–8182

    Google Scholar 

  • Mints M V, Belousova E A, Konilov A N, Natapov L M, Shchipansky A A, Griffin W L, O’Reilly S Y, Dokukina K A, Kaulina T V. 2010. Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology, 38: 739–742

    Google Scholar 

  • Mints M V, Dokukina K A, Konilov A N. 2014. The Meso-Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Res, 25: 561–584

    Google Scholar 

  • Moghadam H S, Rossetti F, Lucci F, Chiaradia M, Gerdes A, Martinez M L, Ghorbani G, Nasrabady M. 2016. The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran. Lithos, 248–251: 517–535

    Google Scholar 

  • Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology, 23: 395–398

    Google Scholar 

  • Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30: 915–918

    Google Scholar 

  • Müntener O, Ulmer P. 2006. Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett, 33: L21308

    Google Scholar 

  • Nair R, Chacko T. 2008. Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 36: 583–586

    Google Scholar 

  • Ni H, Zhang L, Xiong X, Mao Z, Wang J. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Sci Rev, 167: 62–71

    Google Scholar 

  • Nia H M, Baghban S, Simmonds V. 2017. Geology, geochemistry and petrogenesis of post-collisional adakitic intrusions and related dikes in the Khoynarood area, NW Iran. Geochemistry, 77: 53–67

    Google Scholar 

  • Nicholls I A. 1974. Liquids in equilibrium with peridotitic mineral assemblages at high water pressures. Contrib Mineral Petrol, 45: 289–316

    Google Scholar 

  • Nisbet E G. 1984. The continental and oceanic crust and lithosphere in the Archaean: Isostatic, thermal, and tectonic models. Can J Earth Sci, 21: 1426–1441

    Google Scholar 

  • Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L. 2008. Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106: 380–398

    Google Scholar 

  • Ou Q, Wang Q, Wyman D A, Zhang H X, Yang J H, Zeng J P, Hao L L, Chen Y W, Liang H, Qi Y. 2017. Eocene adakitic porphyries in the central-northern Qiangtang Block, central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau. J Geophys Res-Solid Earth, 122: 1025–1053

    Google Scholar 

  • Oyarzun R, Márquez A, Lillo J, López I, Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism. Miner Depos, 36: 794–798

    Google Scholar 

  • Palin R M, White R W, Green E C R. 2016. Partial melting of metabasic rocks and the generation of tonalitic-trondhjemitic-granodioritic (TTG) crust in the archaean: Constraints from phase equilibrium modelling. Precambrian Res, 287: 73–90

    Google Scholar 

  • Pallares C, Maury R C, Bellon H, Royer J Y, Calmus T, Aguillón-Robles A, Cotten J, Benoit M, Michaud F, Bourgois J. 2007. Slab-tearing following ridge-trench collision: Evidence from Miocene volcanism in Baja California, México. J Volcanol Geotherm Res, 161: 95–117

    Google Scholar 

  • Pang K N, Chung S L, Zarrinkoub M H, Li X H, Lee H Y, Lin T H, Chiu H Y. 2016. New age and geochemical constraints on the origin of Quaternary adakite-like lavas in the Arabia-Eurasia collision zone. Lithos, 264: 348–359

    Google Scholar 

  • Payot B D, Jego S, Maury R C, Polve M, Gregoire M, Ceuleneer G, Tamayo Jr R A, Yumul Jr G P, Bellon H, Cotten J. 2007. The oceanic substratum of Northern Luzon: Evidence from xenoliths within Monglo adakite (the Philippines). Island Arc, 16: 276–290

    Google Scholar 

  • Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet Sci Lett, 121: 227–244

    Google Scholar 

  • Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286: 937–939

    Google Scholar 

  • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol, 58: 63–81

    Google Scholar 

  • Petrone C M, Ferrari L. 2008. Quaternary adakite-Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: Is there any slab melt evidence? Contrib Mineral Petrol, 156: 73–86

    Google Scholar 

  • Pineda-Velasco I, Kitagawa H, Nguyen T T, Kobayashi K, Nakamura E. 2018. Production of high-Sr andesite and dacite magmas by melting of subducting oceanic lithosphere at propagating slab tears. J Geophys Res-Solid Earth, 123: 3698–3728

    Google Scholar 

  • Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J Petrol, 37: 1491–1521

    Google Scholar 

  • Polat A, Hofmann A W, Rosing M T. 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chem Geol, 184: 231–254

    Google Scholar 

  • Polat A, Kerrich R. 2002. Nd-isotope systematics of ∼2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: Evidence for shallow crustal recycling at Archean subduction zones. Earth Planet Sci Lett, 202: 345–360

    Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197–200

    Google Scholar 

  • Qian Q, Hermann J. 2013. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195–1224

    Google Scholar 

  • Rabbia O, Correa K J, Hernandez L B, Ulrich T. 2017. “Normal” to adakite-like arc magmatism associated with the El Abra porphyry copper deposit, Central Andes, Northern Chile. Inter J Earth Sci, 106: 2687–2711

    Google Scholar 

  • Rapp R P. 1995. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. J Geophys Res, 100: 15601–15610

    Google Scholar 

  • Rapp R P, Norman M D, Laporte D, Yaxley G M, Martin H, Foley S F. 2010. Continent formation in the archean and chemical evolution of the cratonic lithosphere: Melt-rock reaction experiments at 3–4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids). J Petrol, 51: 1237–1266

    Google Scholar 

  • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335–356

    Google Scholar 

  • Rapp R P, Shimizu N, Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605–609

    Google Scholar 

  • Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 51: 1–25

    Google Scholar 

  • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891–931

    Google Scholar 

  • Reich M, Parada M A, Palacios C, Dietrich A, Schultz F, Lehmann B. 2003. Adakite-like signature of late miocene intrusions at the los pelambres giant porphyry copper deposit in the andes of central Chile: Metallogenic implications. Mineralium Deposita, 38: 876–885

    Google Scholar 

  • Richards J P, Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Econ Geol, 102: 537–576

    Google Scholar 

  • Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol, 98: 1515–1533

    Google Scholar 

  • Richards J P. 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water. Econ Geol, 106: 1075–1081

    Google Scholar 

  • Ringwood A E. 1974. The petrological evolution of island arc systems. J Geol Soc, 130: 183–204

    Google Scholar 

  • Rodríguez C, Selles D, Dungan M, Langmuir C, Leeman W. 2007. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2°S; Andean Southern Volcanic Zone, central Chile). J Petrol, 48: 2033–2061

    Google Scholar 

  • Rogers G, Saunders A D, Terrell D J, Verma S P, Marriner G F. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315: 389–392

    Google Scholar 

  • Rollinson H. 1997. Eclogite xenoliths in West African kimberlites as residues from Archaean granitoid crust formation. Nature, 389: 173–176

    Google Scholar 

  • Rooney T O, Franceschi P, Hall C M. 2011. Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation?. Contrib Mineral Petrol, 161: 373–388

    Google Scholar 

  • Rose E F, Shimizu N, Layne G D, Grove T L. 2001. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science, 293: 281–283

    Google Scholar 

  • Rosenbaum G, Gasparon M, Lucente F P, Peccerillo A, Miller M S. 2008. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics, 27: TC2008

    Google Scholar 

  • Rudnick R L, Barth M, Horn I, McDonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287: 278–281

    Google Scholar 

  • Sajona F G, Maury R C, Bellon H, Cotten J, Defant M J, Pubellier M. 1993. Initiation of subduction and the generation of slab melts in Western and Eastern Mindanao, Philippines. Geology, 21: 1007–1010

    Google Scholar 

  • Sajona F G, Bellon H, Maury R C, Pubellier M, Cotten J, Rangin C. 1994. Magmatic response to abrupt changes in geodynamic settings: Pliocene-Quaternary calc-alkaline and Nb-enriched lavas from Mindanao (Philippines). Tectonophysics, 237: 47–72

    Google Scholar 

  • Sajona F G, Maury R C, Bellon H, Cotten J, Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). J Petrol, 37: 693–726

    Google Scholar 

  • Sajona F G, Maury R C. 1998. Association of adakites with gold and copper mineralization in the Philippines. C R Acad Sci II A, 326: 27–34

    Google Scholar 

  • Samaniego P, Martin H, Robin C, Monzier M. 2002. Transition from calcalkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slab melts and mantle wedge interactions. Geology, 30: 967–970

    Google Scholar 

  • Saunders A D, Rogers G, Marriner G F, Terrell D J, Verma S P. 1987. Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas. J Volcanol Geotherm Res, 32: 223–245

    Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Maury R C, Jochum K P, Hofmann A W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377: 595–600

    Google Scholar 

  • Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise Geochem, 4: 669–701

    Google Scholar 

  • Schuth S, Münker C, König S, Qopoto C, Basi S, Garbe-Schönberg D, Ballhaus C. 2009. Petrogenesis of lavas along the solomon island arc, sw pacific: Coupling of compositional variations and subduction zone geometry. J Petrol, 50: 781–811

    Google Scholar 

  • Seghedi I, Downes H, Szakacs A, Mason P R, Thirlwall M F, Rosu E, Pecskay Z, Marton E, Panaiotu C. 2004. Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: A synthesis. Lithos, 72: 117–146

    Google Scholar 

  • Sen C, Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib Mineral Petrol, 117: 394–409

    Google Scholar 

  • Sheppard S, Griffin T J, Tyler I M, Page R W. 2001. High- and Low-K granites and adakites at a Palaeoproterozoic plate boundary in northwestern Australia. J Geol Soc, 158: 547–560

    Google Scholar 

  • Sillitoe R H. 2010. Porphyry copper systems. Econ Geol, 105: 3–41

    Google Scholar 

  • Sillitoe R H. 2018. Why no porphyry copper deposits in Japan and South Korea? Resour Geol, 68: 107–125

    Google Scholar 

  • Sisson T W, Kelemen P B. 2018. Near-solidus melts of MORB + 4 wt.% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation. Contrib Mineral Petrol, 173: 70

    Google Scholar 

  • Skjerlie K P, Patiño Douce A E. 2002. The Fluid-absent Partial Melting of a Zoisite-bearing Quartz Eclogite from 1.0 to 3.2 GPa; Implications for Melting in Thickened Continental Crust and for Subduction-zone Processes. J Petrol, 43: 291–314

    Google Scholar 

  • Smithies R H, Champion D C, Cassidy K F. 2003. Formation of Earth’s early Archaean continental crust. Precambrian Res, 127: 89–101

    Google Scholar 

  • Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 182: 115–125

    Google Scholar 

  • Smithies R H, Champion D C, Sun S S. 2004. Evidence for early LREE-enriched mantle source regions: Diverse magmas from the c. 3.0 Ga Mallina Basin, Pilbara Craton, NW Australia. J Petrol, 45: 1515–1537

    Google Scholar 

  • Snyder G A, Taylor L A, Crozaz G, Halliday A N, Beard B L, Sobolev V N, Sobolev N V. 1997. The origins of Yakutian eclogite xenoliths. J Petrol, 38: 85–113

    Google Scholar 

  • Song S, Niu Y, Su L, Wei C, Zhang L. 2014. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochim Cosmochim Acta, 130: 42–62

    Google Scholar 

  • Sparks R S J, Annen C, Blundy J D, Cashman K V, Rust A C, Jackson M D. 2019. Formation and dynamics of magma reservoirs. Phil Trans R Soc A, 377: 20180019

    Google Scholar 

  • Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol, 123: 263–281

    Google Scholar 

  • Stevenson J A, Daczko N R, Clarke G L, Pearson N, Klepeis K A. 2005. Direct observation of adakite melts generated in the lower continental crust, Fiordland, New Zealand. Terra Nova, 17: 73–79

    Google Scholar 

  • Stöckhert B, Duyster J, Trepmann C, Massonne H J. 2001. Microdiamond daughter crystals precipitated from supercritical COH+silicate fluids included in garnet, Erzgebirge, Germany. Geology, 29: 391–394

    Google Scholar 

  • Stowell H, Tulloch A, Zuluaga C, Koenig A. 2010. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand. Chem Geol, 273: 91–110

    Google Scholar 

  • Streck M J, Leeman W P, Chesley J. 2007. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology, 35: 351–354

    Google Scholar 

  • Su B, Chen Y, Guo S, Chen S, Li Y B. 2019. Garnetite and pyroxenite in the mantle wedge formed by slab-mantle interactions at different melt/rock ratios. J Geophys Res-Solid Earth, 124: 6504–6522

    Google Scholar 

  • Sun S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc Lond Spec Publ, 42: 313–345

    Google Scholar 

  • Sun W D, Huang R, Li H, Hu Y, Zhang C, Sun S, Zhang L, Ding X, Li C, Zartman R E, Ling M. 2015. Porphyry deposits and oxidized magmas. Ore Geol Rev, 65: 97–131

    Google Scholar 

  • Sun W D, Liang H, Ling M, Zhan M, Ding X, Zhang H, Yang X, Li Y, Ireland T R, Wei Q, Fan W. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochim Cosmochim Acta, 103: 263–275

    Google Scholar 

  • Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview. Sci China Earth Sci, 53: 475–484

    Google Scholar 

  • Tang G J, Wang Q, Wyman D A, Chung S L, Zhao Z H. 2017. Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition (in Chinese). J Geophys Res, 122: 1934–1948

    Google Scholar 

  • Tang G J, Wang Q, Wyman D A, Li Z X, Zhao Z H, Jia X H, Jiang Z Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chem Geol, 277: 281–300

    Google Scholar 

  • Tang G J, Wyman D A, Wang Q, Li J, Li Z X, Zhao Z H, Sun W D. 2012. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth Planet Sci Lett, 329–330: 84–96

    Google Scholar 

  • Tang G J, Wang Q, Wyman D A, Chung S L, Chen H Y, Zhao Z H. 2017. Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition. J Geophys Res-Solid Earth, 122: 1934–1948

    Google Scholar 

  • Tang G, Wang Q. 2010. High-Mg andesites and their geodynamic implications (in Chinese). Acta Petrol Sin, 26: 2495–2512

    Google Scholar 

  • Tang M, Lee C T A, Costin G, Höfer H E. 2019. Recycling reduced iron at the base of magmatic orogens. Earth Planet Sci Lett, 528: 115827

    Google Scholar 

  • Tarney J, Jones C E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. J Geol Soc, 151: 855–868

    Google Scholar 

  • Tatsumi Y. 2006. High-mg andesites in the setouchi volcanic belt, southwestern japan: Analogy to archean magmatism and continental crust formation? Annu Rev Earth Planet Sci, 34: 467–499

    Google Scholar 

  • Tatsumi Y, Hamilton D L, Nesbitt R W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res, 29: 293–309

    Google Scholar 

  • Tatsumi Y, Ishizaka K. 1981. Existence of andesitic primary magma: An example from southwest Japan. Earth Planet Sci Lett, 53: 124–130

    Google Scholar 

  • Tatsumi Y, Ishizaka K. 1982a. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth Planet Sci Lett, 60: 293–304

    Google Scholar 

  • Tatsumi Y, Ishizaka K. 1982b. Magnesian andesite and basalt from Shodo-Shima island, southwest Japan, and their bearing on the genesis of calcalkaline andesites. Lithos, 15: 161–172

    Google Scholar 

  • Thiéblemont D, Stein G, Lescuyer J L. 1997. Epithermal and porphyry deposits: The adakite connection. C R Acad Sci Paris, 325: 103–109

    Google Scholar 

  • Thorkelson D J, Madsen J K, Sluggett C L. 2011. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39: 267–270

    Google Scholar 

  • Thorpe R S, Potts P J, Francis P W. 1976. Rare earth data and petrogenesis of andesite from the North Chilean Andes. Contrib Mineral Petrol, 54: 65–78

    Google Scholar 

  • Tomascak P B, Ryan J G, Defant M J. 2000. Lithium isotope evidence for light element decoupling in the Panama subarc mantle. Geology, 28: 507–510

    Google Scholar 

  • Topuz G, Okay A I, Altherr R, Schwarz W H, Siebel W, Zack T, Satir M, Şen C. 2011. Post-collisional adakite-like magmatism in the Agvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos, 125: 131–150

    Google Scholar 

  • Wang C, Song S G, Niu Y L, Su L. 2015. Late Triassic adakitic plutons within the Archean terrane of the North China Craton: Melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos, 212–215: 353–367

    Google Scholar 

  • Wang C, Song S G, Niu Y L, Allen M B, Su L, Wei C J, Zhang G B, Fu B. 2017. Long-lived melting of ancient lower crust of the North China Craton in response to paleo-Pacific plate subduction, recorded by adakitic rhyolite. Lithos, 292–293: 437–451

    Google Scholar 

  • Wang L, Kusky T M, Polat A, Wang S J, Jiang X F, Zong K Q, Wang J P, Deng H, Fu J M. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nat Commun, 5: 5604

    Google Scholar 

  • Wang Q, Hawkesworth C J, Wyman D, Chung S L, Wu F Y, Li X H, Li Z X, Gou G N, Zhang X Z, Tang G J, Dan W, Ma L, Dong Y H. 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nat Commun, 7: 11888

    Google Scholar 

  • Wang Q, McDermott F, Xu J F, Bellon H, Zhu Y T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lowercrustal melting in an intracontinental setting. Geology, 33: 465–468

    Google Scholar 

  • Wang Q, Tang G J, Jia X H, Zi F, Jiang Z Q, Xu J F, Zhao Z H. 2008a. The metalliferous mineralization associated with adakitic rocks (in Chinese). Geol J China Univ, 14: 350–364

    Google Scholar 

  • Wang Q, Tang G, Hao L, Wyman D, Ma L, Dan W, Zhang X, Liu J, Huang T, Xu C. 2020. Ridge subduction, magmatism, and metallogenesis. Sci China Earth Sci, 63: 1499–1518

    Google Scholar 

  • Wang Q, Wyman A, Xu J F, Jian P, Zhao Z H, Li C F, Xu W, Ma J L, He B. 2007a. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 71: 2609–2636

    Google Scholar 

  • Wang Q, Wyman D A, Xu J F, Dong Y H, Vasconcelos P M, Pearson N, Wan Y S, Dong H, Li C F, Yu Y S, Zhu T X, Feng X T, Zhang Q Y, Zi F, Chu Z Y. 2008b. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet Sci Lett, 272: 158–171

    Google Scholar 

  • Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P, Xiong X L, Bao Z W, Li C F, Bai Z H. 2006b. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89: 424–446

    Google Scholar 

  • Wang Q, Wyman D A, Xu J F, Zhao Z H, Jian P, Zi F. 2007b. Partial melting of thickened or delaminated lower crust in the middle of eastern China: Implications for Cu-Au mineralization. J Geol, 115: 149–161

    Google Scholar 

  • Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Xiong X L, Ma J L. 2006a. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. J Petrol, 47: 119–144

    Google Scholar 

  • Wang Q, Xu J F, Zhao Z H, Bao Z W, Xu W, Xiong X L. 2004a. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent. Geochem J, 38: 417–434

    Google Scholar 

  • Wang Q, Xu J F, Zhao Z H, Wang R J, Qiu J X, Bao Z W. 2001b. The petrogenesis and geodymanic significances of HREE depleted granitoids during Yanshan period in the Dabie Mountains (in Chinese). Acta Petrol Sin, 17: 551–564

    Google Scholar 

  • Wang Q, Xu J F, Zhao Z H, Zi F, Tang G J, Jia X H, Jiang Z Q. 2007c. Adakites or adakitic rocks and associated metal metallogenesis in China (in Chinese). Bull Mineral Petro Geochem, 26: 336–349

    Google Scholar 

  • Wang Q, Xu J F, Zhao Z H. 2003a. Intermediate-acid igneous rocks strongly depleted in heavy rare earthelements (or adakitic rocks) and copper-gold metallogenesis (in Chinese). Earth Sci Front, 10: 561–572

    Google Scholar 

  • Wang Q, Zhao Z H, Bao Z W, Xu J F, Liu W, Li C F, Bai Z H, Xiong X L. 2004b. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei, east China. Resour Geol, 54: 137–152

    Google Scholar 

  • Wang Q, Zhao Z H, Xiong X L, Xu J F. 2001a. Melting of the underplated basaltic lower crust: Evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui Province, China (in Chinese). Geochemica, 30: 353–362

    Google Scholar 

  • Wang Q, Zhao Z H, Xu J F, Li X H, Bao Z W, Xiong X L, Liu Y M. 2003b. Petrologenesis and metallogenesis of the Yanshanian adakite-like rocks in the Eastern Yangtze Block. Sci China Earth Sci, 46: 164–176

    Google Scholar 

  • Wei C J, Guan X, Dong J. 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs (in Chinese). Acta Petrol Sin, 33: 1381–1404

    Google Scholar 

  • Williamson B J, Herrington R J, Morris A. 2016. Porphyry copper enrichment linked to excess aluminium in plagioclase. Nat Geosci, 9: 237–241

    Google Scholar 

  • Xiao L, Clemens J D. 2007. Origin of potassic (C-type) adakite magmas: Experimental and field constraints. Lithos, 95: 399–414

    Google Scholar 

  • Xiong B Q, Xu W L, Li Q L, Yang D B, Zhou Q J. 2015. SIMS U-Pb dating of rutile within eclogitic xenoliths in the Early Cretaceous adakitic rocks of the Xuzhou-Huaibei area, China: Constraints on the timing of crustal thickening of the eastern North China Craton. Sci China Earth Sci, 58: 1100–1106

    Google Scholar 

  • Xiong X L. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34: 945–948

    Google Scholar 

  • Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339–359

    Google Scholar 

  • Xiong X L, Xia B, Xu J F, Niu H C, Xiao W S. 2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chem Geol, 229: 273–292

    Google Scholar 

  • Xiong X L, Liu X C, Zhu Z M, Li Y, Xiao W S, Song M S, Zhang S, Wu J H. 2011. Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry. Sci China Earth Sci, 54: 858–870

    Google Scholar 

  • Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30: 1111–1114

    Google Scholar 

  • Xu W, Gao S, Wang Q, Wang D, Liu Y. 2006. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 34: 721–724

    Google Scholar 

  • Xu W L, Gao S, Yang D B, Pei F P, Wang Q H. 2009. Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos, 107: 269–280

    Google Scholar 

  • Xu W, Hergt J M, Gao S, Pei F, Wang W, Yang D. 2008. Interaction of adakitic melt-peridotite: Implications for the high-Mg signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 265: 123–137

    Google Scholar 

  • Xu Y G, Wang Q, Tang G J, Wang J, Li H Y, Zhou J S, Li Q W, Qi Y, Liu P P, Ma L, Fan J J. 2020. The origin of arc basalts: New advances and remaining questions. Sci China Earth Sci, https://doi.org/10.1007/s11430-020-9675-y

  • Xu Y M, Jiang S Y, Zhu Z Y, Yang S Y, Zhou W. 2014. Petrogenesis of Late Mesozoic granitoids and coeval mafic rocks from the Jiurui district in the Middle-Lower Yangtze metallogenic belt of Eastern China: Geochemical and Sr-Nd-Pb-Hf isotopic evidence. Lithos, 190–191: 467–484

    Google Scholar 

  • Yang Y Z, Chen F, Siebel W, Zhang H, Long Q, He J F, Hou Z H, Zhu X Y. 2014a. Age and composition of Cu-Au related rocks from the lower Yangtze River belt: Constraints on paleo-Pacific slab roll-back beneath eastern China. Lithos, 202–203: 331–346

    Google Scholar 

  • Yang Y Z, Long Q, Siebel W, Cheng T, Hou Z H, Chen F. 2014b. Paleo-Pacific subduction in the interior of Eastern China: Evidence from adakitic rocks in the Edong-Jiurui District. J Geol, 122: 77–97

    Google Scholar 

  • Yang Z M, Lu Y J, Hou Z Q, Chang Z S. 2015. High-Mg diorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J Petrol, 56: 227–254

    Google Scholar 

  • Yogodzinski G M, Kay R W, Volynets O N, Koloskov A V, Kay S M. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull, 107: 505–519

    Google Scholar 

  • Yogodzinski G M, Kelemen P B. 1998. Slab melting in the Aleutians: Implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet Sci Lett, 158: 53–65

    Google Scholar 

  • Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Wöerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409: 500–504

    Google Scholar 

  • Yogodzinski G M, Volynets O N, Koloskov A V, Seliverstov N I, Matvenkov V V. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians. J Petrol, 35: 163–204

    Google Scholar 

  • Yu H L, Zhang L F, Zhang L J, Wei C J, Li X L, Guo J H, Bader T, Qi Y F. 2019. The metamorphic evolution of Salma-type eclogite in Russia: Constraints from zircon/titanite dating and phase equilibria modeling. Precambrian Res, 326: 363–384

    Google Scholar 

  • Yu S Y, Li S Z, Zhang J X, Peng Y B, Somerville I, Liu Y J, Wang Z Y, Li Z F, Yao Y, Li Y. 2019. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China. Earth-Sci Rev, 191: 190–211

    Google Scholar 

  • Yu S Y, Zhang J X, Sun D Y, Li Y S, Gong J H. 2015. Anatexis of ultrahigh-pressure eclogite during exhumation in the north qaidam ultrahigh-pressure terrane: Constraints from petrology, zircon u-pb dating, and geochemistry. Geol Soc Am Bull, 127: 1290–1312

    Google Scholar 

  • Yumul G P, Dimalanta C, Bellon H, Faustino D V, De Jesus J V, Tamayo R A, Jumawan F T. 2000. Adakitic lavas in the Central Luzon back-arc region, Philippines: Lower crust partial melting products?. Island Arc, 9: 499–512

    Google Scholar 

  • Zellmer G F, Iizuka Y, Miyoshi M, Tamura Y, Tatsumi Y. 2012. Lower crustal H2O controls on the formation of adakitic melts. Geology, 40: 487–490

    Google Scholar 

  • Zeng L S, Gao L E, Xie K J, Jing L Z. 2011. Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 303: 251–266

    Google Scholar 

  • Zhan M Z, Sun W D, Ling M X, Li H. 2015. Huangyan ridge subduction and formation of porphyry Cu-Au deposits in Luzon (in Chinese). Acta Petrol Sin, 31: 2101–2114

    Google Scholar 

  • Zhang G B, Niu Y L, Song S G, Zhang L F, Tian Z L, Christy A G, Han L. 2015. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis. Lithos, 226: 65–80

    Google Scholar 

  • Zhang L Y, Ducea M N, Ding L, Pullen A, Kapp P, Hoffman D. 2014. Southern Tibetan Oligocene-Miocene adakites: A record of Indian slab tearing. Lithos, 210–211: 209–223

    Google Scholar 

  • Zhang L, Chen R X, Zheng Y F, Hu Z. 2015. Partial melting of deeply subducted continental crust during exhumation: Insights from felsic veins and host UHP metamorphic rocks in North Qaidam, northern Tibet. J Metamorph Geol, 33: 671–694

    Google Scholar 

  • Zhang Q, Wang Y, Qian Q, Yang J H, Wang Y L, Zhao T P, Guo G J. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China (in Chinese). Acta Petrol Sin, 17: 236–244

    Google Scholar 

  • Zhao Z F, Liu Z B, Chen Q. 2017. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China. J Asian Earth Sci, 145: 260–277

    Google Scholar 

  • Zheng Y C, Hou Z Q, Li Q Y, Sun Q Z, Liang W, Fu Q, Li W, Huang K X. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: Evidence from in situ zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296–311

    Google Scholar 

  • Zheng Y C, Liu S A, Wu C D, Griffin W L, Li Z Q, Xu B, Yang Z M, Hou Z Q, O’Reilly S Y. 2019. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology, 47: 135–138

    Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

    Google Scholar 

  • Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374

    Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subductionzone fluids. Earth Planet Space, 66: 93

    Google Scholar 

  • Zheng Y F, Chen Y X. 2016. Continental versus oceanic subduction zones. Natl Sci Rev, 3: 495–519

    Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Google Scholar 

  • Zheng Y F, Zhao Z F. 2017. Introduction to the structures and processes of subduction zones. J Asian Earth Sci, 145: 1–15

    Google Scholar 

  • Zheng Y F, Mao J W, Chen Y J, Sun W D, Ni P, Yang X. 2019. Hydrothermal ore deposits in collisional orogens. Sci Bull, 64: 205–212

    Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Google Scholar 

  • Zheng Y F, Xu Z, Chen L, Dai L Q, Zhao Z F. 2020. Chemical geodynamics of mafic magmatism above subduction zones. J Asian Earth Sci, 194: 104185

    Google Scholar 

  • Zhou J S, Wang Q, Wyman D A, Zhao Z H. 2020a. Petrologic reconstruction of the Tieshan magma plumbing system: Implications for the genesis of magmatic-hydrothermal ore deposits within originally water-poor magmatic systems. J Petrol

  • Zhou J S, Yang Z S, Hou Z Q, Wang Q. 2020b. Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: Implications for the role of amphibole fractionation during magma evolution. Am Miner, 105: 262–275

    Google Scholar 

Download references

Acknowledgements

We are grateful to Editor-in-Chief Professor Yongfei ZHENG for inviting Qiang WANG to write this paper, and Professors Yongfei ZHENG, Changqian MA, Shuguang SONG and three anonymous reviewers for their constructive and helpful comments on this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41630208 and 91855215), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0702), the National Key R & D Program of China (Grant No. 2016YFC0600407), the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA2007030402), the Key Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSWDQC026), and the Key Program of Guangzhou City (Grant No. 201707020032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Hao, L., Zhang, X. et al. Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. Sci. China Earth Sci. 63, 1992–2016 (2020). https://doi.org/10.1007/s11430-020-9678-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9678-y

Keywords

Navigation