Skip to main content
Log in

Orbital-scale Asian summer monsoon variations: Paradox and exploration

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Asian summer monsoon (ASM) is a vast climate system, whose variability is critical to the livelihoods of billions of people across the Asian continent. During the past half-century, much progress has been made in understanding variations on a wide range of timescales, yet several significant issues remain unresolved. Of note are two long-standing problems concerning orbital-scale variations of the ASM. (1) Chinese loess magnetic susceptibility records show a persistent glacial-interglacial dominated ~100 kyr (thousand years) periodicity, while the cave oxygen-isotope (δ18O) records reveal periodicity in an almost pure precession band (~20 kyr periodicity)—the “Chinese 100 kyr problem”. (2) ASM records from the Arabian Sea and other oceans surrounding the Asian continent show a significant lag of 8–10 kyr to Northern Hemisphere summer insolation (NHSI), whereas the Asian cave δ18O records follow NHSI without a significant lag—a discrepancy termed the “sea-land precession-phase paradox”. How can we reconcile these differences? Recent and more refined model simulations now provide spatial patterns of rainfall and wind across the precession cycle, revealing distinct regional divergences in the ASM domain, which can well explain a large portion of the disparities between the loess, marine, and cave proxy records. Overall, we also find that the loess, marine, and cave records are indeed complementary rather than incompatible, with each record preferentially describing a certain aspect of ASM dynamics. Our study provides new insight into the understanding of different hydroclimatic proxies and largely reconciles the “Chinese 100 kyr problem“ and “sea-land precession-phase paradox”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An Z S. 2000. The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 19: 171–187

    Article  Google Scholar 

  • An Z S, Kukla G J, Porter S C, Xiao J L. 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat Res, 36: 29–36

    Article  Google Scholar 

  • An Z S, Clemens S C, Shen J, Qiang X K, Jin Z D, Sun Y B, Prell W L, Luo J J, Wang S M, Xu H, Cai Y J, Zhou W J, Liu X D, Liu W G, Shi Z G, Yan L B, Xiao X Y, Chang H, Wu F, Ai L, Lu F Y. 2011. Glacialinterglacial Indian summer monsoon dynamics. Science, 333: 719–723

    Article  Google Scholar 

  • An Z S, Liu T S, Lu Y C, Porter S C, Kukla G, Wu X H, Hua Y M. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China. Quat Int, 7–8: 91–95

    Google Scholar 

  • An Z S, Sun D H. 1995. Discussion on the monsoon variation over the Loess Plateau in the last glacial cycle. In: Ye D Z, Lin H, eds. China Contribution to Global Change. Beijing: Beijing Science Press. 154–157

    Google Scholar 

  • Altabet M A, Francois R, Murray D W, Prell W L. 1995. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature, 373: 506–509

    Article  Google Scholar 

  • Battisti D S, Ding Q, Roe G H. 2014. Coherent Pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. J Geophys Res Atmos, 119: 11997

    Article  Google Scholar 

  • Beck J W, Zhou W J, Li C, Wu Z K, White L, Xian F, Kong X H, An Z S. 2018. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. Science, 360: 877–881

    Article  Google Scholar 

  • Bolton C T, Chang L, Clemens S C, Kodama K, Ikehara M, Medina-Elizalde M, Paterson G A, Roberts A P, Rohling E J, Yamamoto Y, Zhao X. 2013. A 500,000-year record of Indian summer monsoon dynamics recorded by eastern equatorial Indian Ocean upper water-column structure. Quat Sci Rev, 77: 167–180

    Article  Google Scholar 

  • Bosmans J H C, Erb M P, Dolan A M, Drijfhout S S, Tuenter E, Hilgen F J, Edge D, Pope J O, Lourens L J. 2018. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs. Quat Sci Rev, 188: 121–135

    Article  Google Scholar 

  • Braconnot P, Marzin C, Grégoire L, Mosquet E, Marti O. 2008. Monsoon response to changes in Earth’s orbital parameters: Comparisons between simulations of the Eemian and of the Holocene. Clim Past, 4: 281–294

    Article  Google Scholar 

  • Cai Y J, Tan L C, Cheng H, An Z S, Edwards R L, Kelly M J, Kong X G, Wang X F. 2010. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett, 291: 21–31

    Article  Google Scholar 

  • Cai Y J, Fung I Y, Edwards R L, An Z S, Cheng H, Lee J E, Tan L C, Shen C C, Wang X F, Day J A, Zhou W J, Kelly M J, Chiang J C H. 2015. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc Natl Acad Sci USA, 112: 2954–2959

    Article  Google Scholar 

  • Caley T, Malaizé B, Revel M, Ducassou E, Wainer K, Ibrahim M, Shoeaib D, Migeon S, Marieu V. 2011a. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a ‘global monsoon’. Quat Sci Rev, 30: 3705–3715

    Article  Google Scholar 

  • Caley T, Malaizé B, Zaragosi S, Rossignol L, Bourget J, Eynaud F, Martinez P, Giraudeau J, Charlier K, Ellouz-Zimmermann N. 2011b. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet Sci Lett, 308: 433–444

    Article  Google Scholar 

  • Caley T, Roche D M, Renssen H. 2014. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model. Nat Commun, 5: 5371

    Article  Google Scholar 

  • Chen J, Huang W, Jin L Y, Chen J H, Chen S Q, Chen F H. 2018. A climatological northern boundary index for the East Asian summer monsoon and its interannual variability. Sci China Earth Sci, 61: 13–22

    Article  Google Scholar 

  • Chen M T, Shiau L J, Yu P S, Chiu T C, Chen Y G, Wei K Y. 2003. 500000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeogr Palaeoclimatol Palaeoecol, 197: 113–131

    Article  Google Scholar 

  • Cheng H, Ai S B, Wang X F, Wang Y J, Kong X G, Yuan X D, Zhang M L, Lin Y S, Qin J M, Ran J C. 2005. Significance of oxygen isotope records in stalagmites from South China (in Chinese). Quat Sci, 25: 157–163

    Google Scholar 

  • Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X, Wang Y, Zhang R, Wang X. 2009. Ice age terminations. Science, 326: 248–252

    Article  Google Scholar 

  • Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534: 640–646

    Article  Google Scholar 

  • Cheng H, Edwards R L, Wang Y, Kong X, Ming Y, Kelly M J, Wang X, Gallup C D, Liu W. 2006. A penultimate glacial monsoon record from Hulu cave and two-phase glacial terminations. Geology, 34: 217–220

    Article  Google Scholar 

  • Cheng H, Sinha A, Wang X, Cruz F W, Edwards R L. 2012. The global paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn, 39: 1045–1062

    Article  Google Scholar 

  • Cheng H, Sinha A, Cruz F W, Wang X, Edwards R L, d’Horta F M, Ribas C C, Vuille M, Stott L D, Auler A S. 2013. Climate change patterns in Amazonia and biodiversity. Nat Commun, 4: 1411

    Article  Google Scholar 

  • Cheng H, Springer G, Sinha A, Hardt B F, Yi L, Li H, Tian Y, Li X, Rowe H, Kathayat G, Ning Y, Edwards R L. 2019b. Eastern North American climate in phase with fall insolation throughout the last three glacialinterglacial cycles. Earth Planet Sci Lett, 522: 125–134

    Article  Google Scholar 

  • Cheng H, Zhang H, Zhao J, Li H, Ning Y, Kathayat G. 2019a. Chinese stalagmite paleoclimate researches: A review and perspective. Sci China Earth Sci, 62: 1489–1513

    Article  Google Scholar 

  • Chiang J C H, Fung I Y, Wu C H, Cai Y, Edman J P, Liu Y, Day J A, Bhattacharya T, Mondal Y, Labrousse C A. 2015. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat Sci Rev, 108: 111–129

    Article  Google Scholar 

  • Clemens S C. 1998. Dust response to seasonal atmospheric forcing: Proxy evaluation and calibration. Paleoceanography, 13: 471–490

    Article  Google Scholar 

  • Clemens S C, Holbourn A, Kubota Y, Lee K E, Liu Z, Chen G, Nelson A, Fox-Kemper B. 2018. Precession-band variance missing from East Asian monsoon runoff. Nat Commun, 9: 3364

    Article  Google Scholar 

  • Clemens S C, Prell W L. 2003. A 350,000-year summer-monsoon multiproxy stack from the Owen Ridge, Northern Arabian Sea. Mar Geol, 201: 35–51

    Article  Google Scholar 

  • Clemens S C, Prell W L, Murray D W, Shimmield G, Weedon G P. 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature, 353: 720–725

    Article  Google Scholar 

  • Clemens S C, Prell W L, Sun Y, Liu Z, Chen G. 2008. Southern Hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons. Paleoceanography, 23: PA4210

    Article  Google Scholar 

  • Clemens S C, Prell W L, Sun Y. 2010. Orbital-scale timing and mechanisms driving late pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ18O. Paleoceanography, 25: PA4207

    Article  Google Scholar 

  • Clemens S C, Prell W L. 2007. The timing of orbital-scale Indian monsoon changes. Quat Sci Rev, 26: 275–278

    Article  Google Scholar 

  • Conroy J L, Overpeck J T. 2011. Regionalization of present-day precipitation in the greater monsoon region of Asia. J Clim, 24: 4073–4095

    Article  Google Scholar 

  • Cruz F W, Burns S J, Karmann I, Sharp W D, Vuille M, Cardoso A O, Ferrari J A, Dias P L S, Viana O. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434: 63–66

    Article  Google Scholar 

  • Ding Y H, Li C Y, Liu Y J. 2004. Overview of the South China Sea monsoon experiment. Adv Atmos Sci, 21: 343–360

    Article  Google Scholar 

  • Ding Z L, Rutter N W, Han J T, Liu T S. 1992. A coupled environmental system formed at about 2.5 Ma in East Asia. Palaeogeogr Palaeoclimatol Palaeoecol, 94: 223–242

    Article  Google Scholar 

  • Emiliani C. 1955. Pleistocene temperatures. J Geol, 63: 538–578

    Article  Google Scholar 

  • Fleitmann D, Burns S J, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A. 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science, 300: 1737–1739

    Article  Google Scholar 

  • Gebregiorgis D, Clemens S, Hathorne E, Giosan L, Thirumalai K, Frank M. 2020. A brief commentary on the interpretation of Chinese speleothem δ18O records as summer monsoon intensity tracers. Quaternary, 3: 7

    Article  Google Scholar 

  • Gebregiorgis D, Hathorne E C, Giosan L, Clemens S, Nürnberg D, Frank M. 2018. Southern Hemisphere forcing of South Asian monsoon precipitation over the past ~1 million years. Nat Commun, 9: 4702

    Article  Google Scholar 

  • Guo Z T, Ding Z L, Liu T S. 1996b. Pedosedimentary events in loess of China and Quaternary climatic cycles. Chin Sci Bull, 41: 1189–1193

    Google Scholar 

  • Guo Z T, Fedoroff N, Liu T S. 1996a. Micromorphology of the loesspaleosol sequence of the last 130 ka in China and paleoclimatic events. Sci China Ser D-Earth Sci, 39: 468–477

    Google Scholar 

  • Guo Z T, Liu D S, An Z S. 1994. Paleosols of the last 0.15 Ma in the Weinan loess section and their paleoclimatic significance (in Chinese). Quat Sci, 14: 256–269

    Google Scholar 

  • Guo Z T, Zhou X, Wu H B. 2012. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes. Clim Dyn, 39: 1073–1092

    Article  Google Scholar 

  • Gupta A K, Anderson D M, Overpeck J T. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the north Atlantic Ocean. Nature, 421: 354–357

    Article  Google Scholar 

  • Hao Q Z, Wang L, Oldfield F, Peng S Z, Qin L, Song Y, Xu B, Qiao Y S, Bloemendal J, Guo Z T. 2012. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature, 490: 393–396

    Article  Google Scholar 

  • Hays J D, Imbrie J, Shackleton N J. 1976. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194: 1121–1132

    Article  Google Scholar 

  • Heslop D, Langereis C G, Dekkers M J. 2000. A new astronomical time-scale for the loess deposits of Northern China. Earth Planet Sci Lett, 184: 125–139

    Article  Google Scholar 

  • Hu J, Emile-Geay J, Tabor C, Nusbaumer J, Partin J. 2019. Deciphering oxygen isotope records from Chinese speleothems with an isotope-enabled climate model. Paleoceanogr Paleoclimatol, 34: 2098–2112

    Article  Google Scholar 

  • Huang E Q, Wang P X, Wang Y, Yan M, Tian J, Li S H, Ma W T. 2020. Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka. Sci Adv, 6: eaba4823

    Article  Google Scholar 

  • Igarashi Y, Oba T. 2006. Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01-2421. Quat Sci Rev, 25: 1447–1459

    Article  Google Scholar 

  • Iwamoto N, Inouchi Y. 2007. Reconstruction of millennial-scale variations in the East Asian summer monsoon over the past 300 ka based on the total carbon content of sediment from Lake Biwa, Japan. Environ Geol, 52: 1607–1616

    Article  Google Scholar 

  • Jiang D B, Lang X M. 2010. Last glacial maximum East Asian monsoon: Results of PMIP simulations. J Clim, 23: 5030–5038

    Article  Google Scholar 

  • Jiang D B, Tian Z P, Lang X M. 2013. Mid-Holocene net precipitation changes over China: Model-data comparison. Quat Sci Rev, 82: 104–120

    Article  Google Scholar 

  • Kathayat G, Cheng H, Sinha A, Spötl C, Edwards R L, Zhang H, Li X, Yi L, Ning Y, Cai Y, Lui W L, Breitenbach S F M. 2016. Indian monsoon variability on millennial-orbital timescales. Sci Rep, 6: 24374

    Article  Google Scholar 

  • Kong W, Swenson L M, Chiang J C H. 2017. Seasonal transitions and the westerly jet in the Holocene East Asian summer monsoon. J Clim, 30: 3343–3365

    Article  Google Scholar 

  • Kong X, Zhou W, Beck J W, Xian F, Qiang X, Ao H, Wu Z, An Z. 2020. Loess magnetic susceptibility flux: A new proxy of East Asian monsoon precipitation. J Asian Earth Sci, 201: 104489

    Article  Google Scholar 

  • Konijnendijk T. 2015. 1.2 million years of climate change, globally and in the Mediterranean. Dissertation for Doctoral Degree. Utrecht: Utrecht University

    Google Scholar 

  • Kudrass H R, Hofmann A, Doose H, Emeis K, Erlenkeuser H. 2001. Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y. Geology, 29: 63–66

    Article  Google Scholar 

  • Kutzbach J E. 1981. Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago. Science, 214: 59–61

    Article  Google Scholar 

  • Kutzbach J E, Guan J, He F, Cohen A S, Orland I J, Chen G. 2020. African climate response to orbital and glacial forcing in 140,000-yr simulation with implications for early modern human environments. Proc Natl Acad Sci USA, 117: 2255–2264

    Article  Google Scholar 

  • Kutzbach J E, Liu X, Liu Z, Chen G. 2008. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim Dyn, 30: 567–579

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys, 428: 261–285

    Article  Google Scholar 

  • Lauterbach S, Andersen N, Wang Y V, Blanz T, Larsen T, Schneider R R. 2020. An ~130 kyr record of surface water temperature and δ18O from the northern bay of Bengal: Investigating the linkage between Heinrich events and weak monsoon intervals in Asia. Paleoceanogr Paleoclimatol, 35: 2019PA003646

    Article  Google Scholar 

  • Lee J E, Fox-Kemper B, Horvat C, Ming Y. 2019. The response of East Asian monsoon to the precessional cycle: A new study using the geophysical fluid dynamics laboratory model. Geophys Res Lett, 46: 11388–11396

    Article  Google Scholar 

  • LeGrande A N, Schmidt G A. 2009. Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim Past, 5: 441–455

    Article  Google Scholar 

  • Leuschner D C, Sirocko F. 2003. Orbital insolation forcing of the Indian Monsoon—A motor for global climate changes? Palaeogeogr Palaeoclimatol Palaeoecol, 197: 83–95

    Article  Google Scholar 

  • Li J J, Feng Z D, Tan L Y. 1988. Late quaternary monsoon patterns on the Loess Plateau of China. Earth Surf Process Landforms, 13: 125–135

    Article  Google Scholar 

  • Li T, Liu F, Abels H A, You C F, Zhang Z K, Chen J, Ji J F, Li L F, Li L, Liu H C. 2017. Continued obliquity pacing of East Asian summer precipitation after the mid-Pleistocene transition. Earth Planet Sci Lett, 457: 181–190

    Article  Google Scholar 

  • Li X Z, Liu X D, Qiu L J, An Z S, Yin Z Y. 2013. Transient simulation of orbital-scale precipitation variation in monsoonal East Asia and arid central Asia during the last 150 ka. J Geophys Res Atmos, 118: 7481–7488

    Article  Google Scholar 

  • Liu G, Li X, Chiang H W, Cheng H, Yuan S, Chawchai S, He S, Lu Y, Aung L T, Maung P M, Tun W N, Oo K M, Wang X. 2020a. On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records. Sci Adv, 6: eaay8189

    Article  Google Scholar 

  • Liu T S. 1985. Loess and the Environment. Beijing: China Ocean Press. 168–174

    Google Scholar 

  • Liu T S, Ding Z L. 1998. Chinese loess and the paleomonsoon. Annu Rev Earth Planet Sci, 26: 111–145

    Article  Google Scholar 

  • Liu T S, Guo Z T, Liu J Q, Han J M, Ding Z L, Gu Z Y, Wu N Q. 1995. Variations of Eastern Asian monsoon over the last 140,000 years. Bull Soc Geol Fr, 166: 221–229

    Google Scholar 

  • Liu X K, Liu J B, Chen S Q, Chen J H, Zhang X, Yan J J, Chen F H. 2020b. New insights on Chinese cave δ18O records and their paleoclimatic significance. Earth-Sci Rev, 207: 103216

    Article  Google Scholar 

  • Liu Z, Wen X, Brady E C, Otto-Bliesner B, Yu G, Lu H Y, Cheng H, Wang Y J, Zheng W P, Ding Y H, Edwards R L, Cheng J, Liu W, Yang H. 2014. Chinese cave records and the East Asia summer monsoon. Quat Sci Rev, 83: 115–128

    Article  Google Scholar 

  • Lv H Y, Han J M, Wu N Q, Guo Z T. 1994. Analysis of soil susceptibility in Modern China and its paleoclimatic significance (in Chinese). Sci China Ser B-Chem Life Sci Earth Sci, 12: 1290–1297

    Google Scholar 

  • Milankovitch M M. 1941. Kanon der erdbestrahlung und seine anwendung auf das eiszeitenproblem. Royal Serbian Acad Spec Publ, 133: 1–633

    Google Scholar 

  • Nakagawa T, Okuda M, Yonenobu H, Miyoshi N, Fujiki T, Gotanda K, Tarasov P, Morita Y, Takemura K, Horie S. 2008. Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms. Geology, 36: 491–494

    Article  Google Scholar 

  • Reichart G J. 1997. Late Quaternary variability of the Arabian Sea monsoon and oxygen minimum zone. Dissertation for Doctoral Degree. Utrecht: Utrecht University

    Google Scholar 

  • Reichart G J, Lourens L J, Zachariasse W J. 1998. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography, 13: 607–621

    Article  Google Scholar 

  • Rohling E J, Marino G, Grant K M. 2014. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Sci Rev, 143: 62–97

    Article  Google Scholar 

  • Ruddiman W F. 2003. Orbital insolation, ice volume, and greenhouse gases. Quat Sci Rev, 22: 1597–1629

    Article  Google Scholar 

  • Ruddiman W F. 2006. What is the timing of orbital-scale monsoon changes? Quat Sci Rev, 25: 657–658

    Article  Google Scholar 

  • Ruddiman W F, Raymo M E. 2003. A methane-based time scale for Vostok ice. Quat Sci Rev, 22: 141–155

    Article  Google Scholar 

  • Schmidt G A, LeGrande A N, Hoffmann G. 2007. Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J Geophys Res, 112: D10103

    Google Scholar 

  • Schmiedl G, Leuschner D C. 2005. Oxygenation changes in the deep western Arabian Sea during the last 190,000 years: Productivity versus deepwater circulation. Paleoceanography, 20: PA2008

    Article  Google Scholar 

  • Schulz H, von Rad U, Erlenkeuser H. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature, 393: 54–57

    Article  Google Scholar 

  • Sha L, Ait Brahim Y, Wassenburg J A, Yin J, Peros M, Cruz F W, Cai Y, Li H, Du W, Zhang H, Edwards R L, Cheng H. 2019. How far north did the African Monsoon fringe expand during the African Humid Period? Insights from Southwest Moroccan speleothems. Geophys Res Lett, 46: 14093–14102

    Article  Google Scholar 

  • Shi Z G. 2016. Response of Asian summer monsoon duration to orbital forcing under glacial and interglacial conditions: Implication for precipitation variability in geological records. Quat Sci Rev, 139: 30–42

    Article  Google Scholar 

  • Shi Z G, Liu X D, Cheng X. 2012. Anti-phased response of northern and southern East Asian summer precipitation to ENSO modulation of orbital forcing. Quat Sci Rev, 40: 30–38

    Article  Google Scholar 

  • Shi Z G, Lei J, Zhou P, Ren X. 2020. Numerical simulation of orbital scale Climate evolution mechanisms in Asia: History and outlook (in Chinese). Quat Sci, 40: 8–17

    Google Scholar 

  • Shi Z G, Liu X D, Sun Y B, An Z S, Liu Z, Kutzbach J. 2011. Distinct responses of East Asian summer and winter monsoons to astronomical forcing. Clim Past, 7: 1363–1370

    Article  Google Scholar 

  • Shi Z G, Xie X N, Ren X, Li X, Yang L, Lei J, Liu X, An Z S. 2019. Radiative effect of mineral dust on East Asian summer monsoon during the last glacial maximum: Role of snow-albedo feedback. Geophys Res Lett, 46: 10901–10909

    Article  Google Scholar 

  • Song Y, Hao Q Z, Ge J Y, Zhao D A, Zhang Y, Li Q, Zuo X X, Lu Y W, Wang P. 2014. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quat Int, 334–335: 119–131

    Article  Google Scholar 

  • Spratt R M, Lisiecki L E. 2016. A late pleistocene sea level stack. Clim Past, 12: 1079–1092

    Article  Google Scholar 

  • Sun Y B, Clemens S C, An Z S, Yu Z. 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quat Sci Rev, 25: 33–48

    Article  Google Scholar 

  • Sun Y B, Kutzbach J, An Z S, Clemens S, Liu Z Y, Liu W G, Liu X D, Shi Z G, Zheng W P, Liang L J, Yan Y, Li Y. 2015. Astronomical and glacial forcing of East Asian summer monsoon variability. Quat Sci Rev, 115: 132–142

    Article  Google Scholar 

  • Sun Y B, Wu F, Clemens S C, Oppo D W. 2008. Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle. Chem Geol, 257: 240–246

    Article  Google Scholar 

  • Sun Y B, Yin Q, Crucifix M, Clemens S C, Araya-Melo P, Liu W G, Qiang X K, Liu Q S, Zhao H, Liang L, Chen H Y, Li Y, Zhang L, Dong G C, Li M, Zhou W J, Berger A, An Z S. 2019. Diverse manifestations of the mid-Pleistocene climate transition. Nat Commun, 10: 352

    Article  Google Scholar 

  • Tabor C R, Otto-Bliesner B L, Brady E C, Nusbaumer J, Zhu J, Erb M P, Wong T E, Liu Z Y, Noone D. 2018. Interpreting precession-driven δ18O variability in the South Asian monsoon region. J Geophys Res Atmos, 123: 5927–5946

    Article  Google Scholar 

  • Tang X, Qian W Y, Liang P. 2006. Climatic characteristics of the East ASM Fringe zone (in Chinese). Plateau Meteorol, 25: 375–381

    Google Scholar 

  • Thomas E K, Clemens S C, Prell W L, Herbert T D, Huang Y S, Liu Z Y, Sinninghe Damsté J S, Sun Y B, Wen X Y. 2014. Temperature and leaf wax δ2H records demonstrate seasonal and regional controls on Asian monsoon proxies. Geology, 42: 1075–1078

    Article  Google Scholar 

  • Wang P X. 2006. Orbital forcing of the low-latitude processes (in Chinese). Quat Sci, 26: 694–701

    Google Scholar 

  • Wang P X, Wang B, Cheng H, Fasullo J, Guo Z T, Kiefer T, Liu Z Y. 2017. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci Rev, 174: 84–121

    Article  Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294: 2345–2348

    Article  Google Scholar 

  • Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 1090–1093

    Article  Google Scholar 

  • Wang Y, Jian Z M, Zhao P, Xiao D, Chen J M. 2016. Relative roles of land-and ocean-atmosphere interactions in Asian-Pacific thermal contrast variability at the precessional band. Sci Rep, 6: 28349

    Article  Google Scholar 

  • Weber M E, Lantzsch H, Dekens P, Das S K, Reilly B T, Martos Y M, Meyer-Jacob C, Agrahari S, Ekblad A, Titschack J, Holmes B, Wolfgramm P. 2018. 200,000 years of monsoonal history recorded on the lower Bengal Fan—Strong response to insolation forcing. Glob Planet Chang, 166: 107–119

    Article  Google Scholar 

  • Weber S L, Tuenter E. 2011. The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons. Quat Sci Rev, 30: 469–479

    Article  Google Scholar 

  • Wu C H, Chiang J C H, Hsu H H, Lee S Y. 2016. Orbital control of the western North Pacific summer monsoon. Clim Dyn, 46: 897–911

    Article  Google Scholar 

  • Xiong S F, Ding Z L, Liu D S, Ren J Z. 1998. Comparison of loess paleoclimate records in China with high latitude glaciation records and tropical ocean records in the last glacial period (in Chinese). Mar Geol Quat Geol, 18: 71–76

    Google Scholar 

  • Yuan D X, Cheng H, Edwards R L, Dykoski C A, Kelly M J, Zhang M L, Qing J M, Lin Y S, Wang Y J, Wu J Y, Dorale J A, An Z S, Cai Y J. 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 304: 575–578

    Article  Google Scholar 

  • Zhang H, Ait B Y, Li H, Zhao J, Kathayat G, Tian Y, Baker J, Wang J, Zhang F, Ning Y, Edwards R L, Cheng H. 2019. The Asian summer monsoon: Teleconnections and forcing mechanisms—A review from Chinese speleothem δ18O records. Quaternary, 2: 26

    Article  Google Scholar 

  • Zhang H, Cheng H, Baker J, Kathayat G. 2020. Response to comments by Daniel Gebregiorgis et al. “A brief commentary on the interpretation of Chinese speleothem δ18O records as summer monsoon intensity tracers”. Quaternary 2020, 3, 7. Quaternary, 3: 8

    Article  Google Scholar 

  • Zhao Y, Harrison S P. 2012. Mid-holocene monsoons: A multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim Dyn, 39: 1457–1487

    Article  Google Scholar 

  • Ziegler M, Lourens L J, Tuenter E, Hilgen F, Reichart G J, Weber N. 2010a. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation. Paleoceanography, 25: PA3213

    Article  Google Scholar 

  • Ziegler M, Lourens L J, Tuenter E, Reichart G J. 2010b. High Arabian Sea productivity conditions during MIS 13—Odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition? Clim Past, 6: 63–76

    Article  Google Scholar 

  • Ziegler M, Tuenter E, Lourens L J. 2010c. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quat Sci Rev, 29: 1481–1490

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41888101 & 41731174).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Cheng or Yanjun Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Zhang, H., Cai, Y. et al. Orbital-scale Asian summer monsoon variations: Paradox and exploration. Sci. China Earth Sci. 64, 529–544 (2021). https://doi.org/10.1007/s11430-020-9720-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9720-y

Keywords

Navigation