Skip to main content
Log in

Review of prediction for thermal contact resistance

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Theoretical prediction research on thermal contact resistance is reviewed in this paper. In general, modeling or simulating the thermal contact resistance involves several aspects, including the descriptions of surface topography, the analysis of micro mechanical deformation, and the thermal models. Some key problems are proposed for accurately predicting the thermal resistance of two solid contact surfaces. We provide a perspective on further promising research, which would be beneficial to understanding mechanisms and engineering applications of the thermal contact resistance in heat transport phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viswanath R, Wakharkar V, Watwe A, et al. Thermal performance challenges from silicon to systems. Int Technol J, 2000, 4(3): 1–16

    Google Scholar 

  2. Min G R, Guo S. Thermal Control of Spacecraft (in Chinese). Beijing: Science Press, 1998

    Google Scholar 

  3. Geng Y B, Wei Y M, Pan H L, et al. The thermal control technologies for electric thrusters (in Chinese). In: The Symposium on Electric Propulsion in China, Beijing, China, 2007. 6–11

  4. Ramamurthi K, Kumar S S, Ahilash P M. Thermal contact conductance of molybdenum-sulphide-coated joints at low temperature. J Thermophys Heat Transf, 2007, 21(4): 811–813

    Article  Google Scholar 

  5. Culham J R, Khan W A, Yovanovich M M, et al. The influence of material properties and spreading resistance in the thermal design of plate fin heat sinks. Trans ASME J Electron Pack, 2007, 129: 76–81

    Article  Google Scholar 

  6. Alcock J F. Communications on a review of recent progress in heat transfer. Proc Institution Mech Engineer, 1943, 149: 126–130

    Article  Google Scholar 

  7. Lambert M A, Fletcher L S. Review of models for thermal contact conductance of metals. J Thermophys Heat Transf, 1997, 11(2): 129–140

    Article  Google Scholar 

  8. Lambert M A, Fletcher L S. Thermal contact conductance of non-flat, rough, metallic coated metals. Trans ASME J Heat Transf, 2002, 124: 405: 4–12

    Google Scholar 

  9. Yovanovich M M. Conduction and thermal contact resistances (conductances). In: Rohsenow W M, Hartnett J P, Cho Y I, eds. Hand-hook of Heat Transfer. Chapter 3. New York: McGraw Hill, 1998

    Google Scholar 

  10. Yovanovich M M, Marotha E. Thermal spreading and contact resistance. In: Bejan A, Kraus A D, eds. Heat Transfer Handbook. Chapter 4. New York: Wiley, 2003

    Google Scholar 

  11. Fletcher L S. A review of thermal control materials for metallic junctions. J Spacecraft Rocket, 1972, 9: 849–850

    Article  Google Scholar 

  12. Fletcher L S. A review of thermal enhancement techniques for electronic systems, IEEE T Component Hyhird Manuf Technol, 1990, 13(4): 1012–1021

    Article  Google Scholar 

  13. Kraus A D, Bar-Cohen A. Thermal Analysis and Control of Electronic Equipment. New-York: McGraw-Hill, 1983

    Google Scholar 

  14. Yovanovich M M, Antonetti V W. Application of thermal contact resistance theory to electronic packages. In: Bar-Cohen A, Kraus A D, eds. Advances in Thermal Modeling of Electronic Components and Systems. New York: Hemisphere Publishing, 1988

    Google Scholar 

  15. Madhusudana C V. Thermal Contact Conductance. New York: Springer-Verlag, 1996

    Google Scholar 

  16. Madhusudana C V, Fletcher L S. Contact heat transfer—The last decade. AIAA J, 1986, 24(3): 510–523

    Article  MathSciNet  Google Scholar 

  17. Fletcher L S. Recent developments in contact conductance heat transfer. Transa ASME J heat transf, 1988, 110: 1059–1070

    Article  Google Scholar 

  18. Swartz E, Pohl R. Thermal boundary resistance. Rev Mod Phys, 1989, 61: 605–668

    Article  Google Scholar 

  19. Gmelin E, Asen-Palmer M, Reuther M, et al. Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures. J Phys D-Appl Phys, 1999, 32: R19–R43

    Article  Google Scholar 

  20. Gu W L. The experimental research on thermal contact resistance (in Chinese). J Nanjing Univ Aeronautics Astronautics, 1992, 24(1): 46–52

    Google Scholar 

  21. Gu W L. The temperature effect on thermal contact resistance (in Chinese). J Nanjing Univ Aeronautics Astronautics, 1994, 26(3): 342–349

    Google Scholar 

  22. Gu W L. A calculation method of thermal contact resistance on random surface (in Chinese). J Aerospace Power, 1995, 10(3): 232–236

    Google Scholar 

  23. Xu L, Xu J M. Research on the thermal contact resistance of solid surface at low temperature (in Chinese). Cryogenics Supercon, 1996, 24(1): 53–58

    Google Scholar 

  24. Xu L, Zhang T, Xiong W, et al. The contact surface effect on thermal contact resistance at low temperature and vacuum (in Chinese). Vacuum Cryogenics, 1998, 4(1): 1–4

    Google Scholar 

  25. Zhang T, Xu L, Xiong W, et al. Comparison and analysis of theoretical models in the research of thermal contact conductance (in Chinese). Cryogenics Supercon, 1998, 26(2): 58–64

    Google Scholar 

  26. Xu L, Zhang T, Zhao L P, et al. Using double heat-flux meter method to measure the thermal contact resistance of solid material at low temperature and vacuum (in Chinese). Cryogenics, 1999, (4): 185–189

  27. Zhao L P, Xu L. Using profile discrimination method to investigate thermal contact conductance between rough interfaces (in Chinese). Cryogenics, 2000, 118(6): 52–57

    MathSciNet  Google Scholar 

  28. Zhao L P, Xu L, Li Z C, et al. Research on the relationship between thermal contact conductance of solid interfaces and cycling load at low temperatures (in Chinese). Cryogenics Supercon, 2000, 28(1): 51–54

    Google Scholar 

  29. Xu R P, Feng H D, Zhao L P, et al. Experimental investigation of thermal contact conductance at low temperature based on fractal description. Int Commun Heat Mass Transfer, 2006, 33: 811–818

    Article  Google Scholar 

  30. Chen J. Investigation on the computer simulation of boundary heat transfer process between solids at low temperature (in Chinese). Dissertation of Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2004

    Google Scholar 

  31. Shi L. Investigation of heat transport on the solid-solid contact interface at low temperature (in Chinese). Dissertation of Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2006

    Google Scholar 

  32. Han Y G, Xuan Y M, Tang R F. Heat transfer on the contact surfaces with frictional heating (in Chinese). J Nanjing Univ Sci Technol, 1998, 22(3): 260–263

    Google Scholar 

  33. Ying J. The evaluation of thermal contact resistance in heat transfer effect (in Chinese). J Zhejiang Univ, 1996, 30(4): 415-4–21

    Google Scholar 

  34. Ying J. The theoretical and experimental research of thermal contact resistance on roughness surface (in Chinese). J Zhejiang Univ (Sci Ed), 1997, 31(1): 104–109

    Google Scholar 

  35. Zhao H L, Huang Y M, Xu J L, et al. Experiment research on thermal contact resistance of normal used joints (in Chinese). J Xi’an Univ Technol, 1999, 15(3): 26–29

    Google Scholar 

  36. Zhu D C. Experiment research on solid interface thermal contact conductance coefficient (in Chinese). Dissertation of Master Degree. Dalian: Dalian University of Technology, 2007

    Google Scholar 

  37. Bahrami M, Culham J R, Yovanovich M M, et al. Thermal contact resistance of nonconforming rough surfaces. Part 1: Contact mechanics model. J Thermophys Heat Transf, 2004, 18(2): 209–217

    Article  Google Scholar 

  38. Bahrami M, Culham J R, Yovanovich M M, et al. Thermal contact resistance of nonconforming rough surfaces. Part 2: Thermal model. J Thermophys Heat Transf, 2004, 18(2): 218–227

    Article  Google Scholar 

  39. Carslaw H S, Jaeger J C. Conduction of Heat in Solids. 2nd ed. Oxford: Clarendon Press, 1959

    Google Scholar 

  40. Gibson R D. The contact resistance for a semi-infinite cylinder in a vacuum. Appi Energ, 1976, 2: 57–65

    Article  Google Scholar 

  41. Yovanovich M M. Thermal constriction resistance of contacts on a half-space: Intergral formulation. In: Progress in Astronautics and Aeronautics: Radiative Transfer and Thermal Control. New York: AIAA, 1976. 397–418

    Google Scholar 

  42. Mikic B B, Rohsenow W M. Thermal Contact Resistance. Mech Eng RepDSP74542-41, MIT. 1966

  43. Cooper M G, Mikic B B, Yovanovich M M. Thermal contact conductance. Int J Heat Mass Transf, 1969, 12: 279–300

    Article  Google Scholar 

  44. Yovanovich M M. General thermal constriction resistance parameter for annular contacts on circular flux tubes. AIAA J, 1976, 14(6): 822–824

    Article  Google Scholar 

  45. Negus K J, Yovanovich M M. Constriction resistance of circular flux tubes with mixed boundary conditions by linear superposition of Neumann solutions. ASME-84-HT-84, ASME. 1984

  46. Mao Q G. The Evaluation and Measurement of Surface Roughness (in Chinese). Beijing: Mechanical Industry Press, 1991

    Google Scholar 

  47. Zhou Z R. Advancing of Tribology Development (in Chinese). Beijing: Science Press, 2006

    Google Scholar 

  48. Guo F Y, Chen Z H. The Theory and Application of Electric Contact (in Chinese). Beijing: China Electric Power Press, 2008

    Google Scholar 

  49. Clausing A M, Chao B T. Thermal contact conductance in a vacuum environment. Trans ASME J Heat Transf, 1965, 87: 243–251

    Google Scholar 

  50. Greenwood J A, Tripp J H. The elastic contact of rough spheres. J Appi Mech, 1967, 89(1): 153–159

    Google Scholar 

  51. Holm R. Electric Contacts: Theory and Applications. New York: Springer-Verlag, 1967

    Google Scholar 

  52. Yovanovich M M. Overall constriction resistance between contacting rough, wavy surfaces. Int J Heat Mass Transf, 1969, 12: 1517–1520

    Article  Google Scholar 

  53. Bürde S S, Yovanovich M M. Thermal resistance at smooth sphere/rough flat contacts: Theoretical analysis. AIAA 78–871. 1978

  54. Lambert M A. Thermal contact conductance of spherical rough surfaces. Dissertation of Doctoral Degree. Houston: Texas A & M University, 1995

    Google Scholar 

  55. Kumar S S, Ramamurthi K. Influence of flatness and waviness of rough surfaces on surface contact conductance. Trans ASME J Heat Transf, 2003, 125: 394–402

    Article  Google Scholar 

  56. Greenwood J A, Wiliamson J B P. Contact of nominally flat surfaces. Proc Roy Soc A, 1966, 295: 300–319

    Article  Google Scholar 

  57. Greenwood J A. The area of contact between rough surfaces and flats. J Lubricant Technol, 1967, 81: 81–91

    Google Scholar 

  58. Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces. Proc Inst Mech Eng, 1970, 185: 625–633

    Article  Google Scholar 

  59. Mikic B B. Thermal contact conductance: Theoretical considerations. Int J Heat mass transfer, 1974, 17: 205–214

    Article  Google Scholar 

  60. Bush A W, Gibson R D, Thomas T R. The elastic contact of rough surface. Wear, 1975, 35: 87–111

    Article  Google Scholar 

  61. Sayles R S, Thomas T R. Thermal conductance of a rough elastic contact. J Appi Energ, 1976, 2: 249–267

    Article  Google Scholar 

  62. McCool J I. Comparison of models for the contact of rough surfaces. Wear, 1986, 107: 37–60

    Article  Google Scholar 

  63. Yovanovich M M. Thermal contact correlations. In: AIAA 16th Thermophysics Conference, Palo Alto, California, USA, 1981. 83–95

  64. Sridhar M R, Yovanovich M M. Review of elastic and plastic contact conductance models: Comparison with experiment. J Thermophys HeatTransf, 1994, 8(4): 633–640

    Article  Google Scholar 

  65. Polycarpou A A, Etsion I. Analytical approximations in modeling contacting rough surfaces. Trans ASME J Trihol, 1999, 121: 234–239

    Article  Google Scholar 

  66. Greenwood J A, Wu J J. Surface roughness and contact: An apology. Meccanica, 2001, 36(6): 617–630

    Article  MATH  Google Scholar 

  67. Sayles R S, Thomas T R. Surface topography as a nonstationary random process. Nature, 1978, 271(2): 431 434

    Google Scholar 

  68. Mandelbrot B B. Fractal, Form, Chance and Dimension. Freeman: Sanfacisco, 1977

    Google Scholar 

  69. Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces. ASME J Trihol, 1990, 112(1): 205–216

    Article  Google Scholar 

  70. Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces. ASME J Tribol, 1991, 113(1): 1–11

    Article  Google Scholar 

  71. Majumdar A, Tien C L. Fractal characterization and simulation of rough surface. Wear, 1990, 136: 313–324

    Article  Google Scholar 

  72. Warren T L, Krajcinovic D. Fractal models of elastic-perfectly plastic contact of rough surfaces based on the Contor set. Int J Solid Struct, 1995, 32(19): 2907–2922

    Article  MATH  Google Scholar 

  73. Warren T L, Krajcinovic D. Random cantor set models for the elastic-perfectly plastic contact of rough surfaces. Wear, 1996, 196: 1–15

    Article  Google Scholar 

  74. Warren T L, Majumdar A, Krajcinovic D. A fractal model for the rigid-perfectly plastic contact of rough surfaces. Trans ASME J Appi Mech, 1996, 63: 47–54

    MATH  MathSciNet  Google Scholar 

  75. Dubuc B, Tricot C, Zucker S W. Evaluating the fractal dimension of profiles. Phys Rev A, 1989, 39(3): 1500–1512

    Article  MathSciNet  Google Scholar 

  76. Hasegawa M, Liu J, Okuda K, et al. Calculation of the fractal dimensions of machined surface profiles. Wear, 1996, 192: 40–45

    Article  Google Scholar 

  77. Ge S R, Suo S F. The method of calculation the fractal dimension of surface roughness profiles (in Chinese). Tribology, 1997, 17(4): 354–362

    Google Scholar 

  78. Wang A L, Yang C X. Wavelet transform method evaluate the fractal characterization of profiles (in Chinese). Chinese J Mech Eng, 2002, 38(5): 80–85

    Article  Google Scholar 

  79. Wang A L, Yang C X. The calculation methods for the fractal characterization of surface topography (in Chinese). Chinese Mech Eng, 2002, 13(8): 714–718

    Google Scholar 

  80. Wang A L, Yang C X. Wavelet transform method evaluate the fractal characterization of profiles (in Chinese). Chinese J Mech Eng, 2002, 38(5): 80–85

    Article  Google Scholar 

  81. Wang A L, Yang C X, Yuan X G. Evaluation of the wavelet transform method for machined surface topography II: Fractal characteristic analysis. Tribol Int, 2003, 36(7): 527–535

    Article  Google Scholar 

  82. Wang A L, Yang C X, Yuan X G. Evaluation of the wavelet transform method for machined surface topography I: Methodology validation. Tribol Int, 2003, 36(7): 517–526

    Article  Google Scholar 

  83. Ge S R, Zhu H. Fractal in Tribology (in Chinese). Beijing: China Machine Press, 2005

    Google Scholar 

  84. Chang W R, Etsion I, Bogy D B. An elastic-plastic model for the contact of rough surfaces. Trans ASME J Tribol, 1987, 109: 257–263

    Article  Google Scholar 

  85. Zahouani H, Vargiolu R, Loubet J L. Fractal models of surface topography and contact mechanics. Math Comp Model, 1998, 28(4–8): 517–534

    Article  MATH  Google Scholar 

  86. Blyth M G, Pozrikidis C. Heat conduction across irregular and fractal-like surfaces. Int J Heat Mass Transf, 2003, 46: 1329–1339

    Article  MATH  Google Scholar 

  87. Zou M Q, Yu B M, Cai J C, et al. Fractal model for thermal contact conductance. J Heat Transf, 2008, 130: 101301

    Article  Google Scholar 

  88. Ciavarella M, Dibello S, Demelio G. Conductance of rough random profiles. Int J Solid Struct, 2008, 45(3–4): 879–893

    Article  MATH  Google Scholar 

  89. Wang A L, Wu Y T, Yang C X. The size distribution characteristic of cavities and active nucleation sites in pool boiling surface (in Chinese). J Eng Therm Energ Power, 2003, 18(3): 291–296

    Google Scholar 

  90. Li Y Z, Madhusudana C V, Leonardi E. Experimental investigation of thermal contact conductance: Variations of surface microhardness and roughness. Int J Thermophys, 1998, 19(6): 1691–1704

    Google Scholar 

  91. Singhal V, Garimella S V. Prediction of thermal contact conductance by surface deformation analysis. In: Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, New York, USA, 2001. 43–50

  92. Zhao J F, Wang A L, Yang C X. The statistical characteristic of roughness profiles on thermal contact conductance surface (in Chinese). Cryogenics, 2003, 134(4): 49–56

    Google Scholar 

  93. Zhao J F, Wang A L, Yang C X. A model of thermal contact conductance based on the statistic characteristic of roughness profile (in Chinese). J Eng Thermophys, 2004, 25(1): 145–147

    Google Scholar 

  94. Zhao J F, Wang A L, Yang C X. Prediction of thermal contact conductance based on the statistics of the roughness profile characteristics. Int J Heat Mass Transf, 2005, 48: 974–985

    Article  Google Scholar 

  95. Patir N. A numerical procedure for random generation of rough surfaces. Wear, 1978, 47: 63–277

    Article  Google Scholar 

  96. Waton W, Spedding T A. The time series modeling of non-Gaussian engineering processes. Wear, 1982, 83: 215–231

    Article  Google Scholar 

  97. Whitehouse D J. The generation of two-dimensional random surfaces having a specified function. Ann CIRP, 1983, 32(1): 495–498

    Article  Google Scholar 

  98. Newland D E. An Introduction to Random Vibration and Spectral Analysis. 2nd ed. London: Longman, 1984

    Google Scholar 

  99. Hu Y Z, Tonder K. Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. Int J Mach Tools Manuf, 1992, 32: 83–99

    Article  Google Scholar 

  100. Chilamankuri S K, Bhushan B. Contact analysis of non-Gaussian random surfaces. Proc Inst Mech Eng, 1998, 212: 19–32

    Google Scholar 

  101. Mihailidis A, Bakolas V. Numerical simulation of real 3-D rough surface. J Balk Tribol Assoc, 1999, 5: 247–231

    Google Scholar 

  102. Wu J J. Simulation of rough surface with FFT. Tribol Int, 2000, 33: 47–58

    Article  Google Scholar 

  103. Bakolas V. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces. Wear, 2003, 254: 546–554

    Google Scholar 

  104. Zhou X K, Zhou H, Li D L. Fractal Iconography (in Chinese). Beijing: Higher Education Press, 1995

    Google Scholar 

  105. McGaughey D, Atiken G J M. Generating two-dimensional Brownian motion using the fraction Gaussian process (FGP) algorithm. Physica A, 2002, 311: 369–380

    Article  MATH  MathSciNet  Google Scholar 

  106. Yovanovich M M. Thermal contact correlations. In: AIAA 16th Thermophysics Conference, Palo Alto, California, USA, 1981. 83–95

  107. Hegazy A A. Thermal joint conductance of conforming rough surfaces: Effect of surface microhardness variation. Dissertation of Doctoral Degree. Waterloo: University of Waterloo, 1985

    Google Scholar 

  108. Liu J. Micro/Nano-Scale Heat Transfer (in Chinese). Beijing: Science Press, 2001

    Google Scholar 

  109. National Nature Science Foundation Council. Engineering Thermophysics and Energy Utilization (2006–2010)(in Chinese). Beijing: Science Press, 2007

    Google Scholar 

  110. Sridhar M R, Yovanovich M M. Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments. Trans AMSE J Heat Transf, 1996, 118: 3–9

    Article  Google Scholar 

  111. Rostami A A, Hassan A Y, Lim P C. Parametric study of thermal constriction resistance. Heat Mass Transf, 2001, 37(1): 5–10

    Article  Google Scholar 

  112. Trujillo D M, Pappoff C G. A general thermal contact resistance finite element. Finite Eiern Anal Des, 2002, 38: 263–276

    Article  MATH  Google Scholar 

  113. Wahid SMS. Numerical analysis of heat flow in contact heat transfer. Int J Heat Mass Transf, 2003, 46: 4751–4754

    Article  Google Scholar 

  114. Black A F, Singhal V, Garimella S V. Analysis and prediction of constriction resistance for contact between rough engineering surface. J Thermophys Heat Transf, 2004, 18(1): 30–36

    Article  Google Scholar 

  115. Salti B, Laraqi N. 3-D numerical modeling of heat transfer between two sliding bodies: Temperature and thermal contact resistance. Int J Heat Mass Transf, 1999, 42: 2363–2374

    Article  MATH  Google Scholar 

  116. Laraqi N. Thermal constriction resistance of coated solids-static and sliding contacts. Int Commun Heat Mass Transf, 1999, 26(3): 299–309

    Article  Google Scholar 

  117. Laraqi N, Barri A. New models of thermal resistance at the interface of solids connected by random disk contacts. CR Mecanique, 2002, 330: 39–43

    Article  MATH  Google Scholar 

  118. Laraqi N, Barri A. Theory of thermal resistance between solids with randomly sized and located contacts. Int J Heat Mass Transf, 2002, 45:4175–4180

    Article  MATH  Google Scholar 

  119. Laraqi N. Change of scale effect in the phenomena of thermal multi-constriction. CR Mecanique, 2002, 330:141–145

    Article  MATH  Google Scholar 

  120. Tomimura T, Matsuda Y, Zhang X, et al. Two-dimensional modeling of heat transfer between contacting metal surfaces with spherical waviness: Estimation of thermal contact conductance based on random numbers surface model. In: 5th International Symposium on Heat Transfer, Beijing, China, 2000. 137–142

  121. Zhang X, Cong P, Fujiwara S, et al. A new method for numerical simulation of thermal contact resistance in cylindrical coordinates. Int J Heat Mass Transf, 2004, 47: 1091–1098

    Article  MATH  Google Scholar 

  122. Zhang X, Cong P, Fujii M. A study on thermal contact resistance at the interface of two solids. Int J Thermophys, 2006, 27(3): 880–895

    Article  Google Scholar 

  123. Touzellbaev M, Goodson K. Impact of nucleation density on the thermal resistance near diamond-substrate boundaries. J Thermophys Heat Transf, 1997, 11: 506–512

    Article  Google Scholar 

  124. Prasher R S, Phelan P E. A scattering-mediated acoustic mismatch model for the prediction of thermal boundary resistance. J Heat Transf, 2001, 123: 105–112

    Article  Google Scholar 

  125. Chen G. Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J Heat Transf, 2002, 124: 320–328

    Article  Google Scholar 

  126. Liang X G, Yue B. The interface roughness effect on the in-plane thermal conductivity in nanoscale (in Chinese). J Eng Thermophys, 2006, 27(3): 475: 4–77

    Google Scholar 

  127. Liao N, Yang P. Characterizations of interfacial heat transfer for electronic packages by multi-scale modeling. J Thermophys Heat Transf, 2008, 22(4): 581–586

    Article  MathSciNet  Google Scholar 

  128. Prasher R S, Phelan P E. Microscopic and macroscopic thermal contact resistances of pressed mechanical contacts. J Appi Phys, 2006, 100:063538

    Article  Google Scholar 

  129. Zhong H, Lukes J R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys Rev B, 2006, 74: 125403

    Article  Google Scholar 

  130. Hu M, Shenogin S, Keblinski P. Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene. Appi Phys Lett, 2007, 91: 241910

    Article  Google Scholar 

  131. Termentzidis K, Chantrenne P, Keblinski P. Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces. Phys Rev B, 2009, 79: 214307

    Article  Google Scholar 

  132. Landry E S, McGaughey A J H. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys Rev B, 2009, 80: 165304

    Article  Google Scholar 

  133. Lyver J W, Blaisten-Barojas E. Effects of the interface between two Lennard-Jones crystals on the lattice vibrations: A molecular dynamics study. J Phys-Condens Mat, 2009, 21: 345402

    Article  Google Scholar 

  134. Gu W L. The Semi-Empirical Correlation of Contact Heat Transfer Research and Other Problems (in Chinese). CSAA-99-006. 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnLiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Zhao, J. Review of prediction for thermal contact resistance. Sci. China Technol. Sci. 53, 1798–1808 (2010). https://doi.org/10.1007/s11431-009-3190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-3190-6

Keywords

Navigation