Skip to main content
Log in

Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons

  • Article
  • Special Topic: Neurodynamics
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

We find that the fractional-order Hindmarsh-Rose model neuron demonstrates various types of firing behavior as a function of the fractional order in this study. There exists a clear difference in the bifurcation diagram between the fractional-order Hindmarsh-Rose model and the corresponding integer-order model even though the neuron undergoes a Hopf bifurcation to oscillation and then starts a period-doubling cascade to chaos with the decrease of the externally applied current. Interestingly, the discharge frequency of the fractional-order Hindmarsh-Rose model neuron is greater than that of the integer-order counterpart irrespective of whether the neuron exhibits periodic or chaotic firing. Then we demonstrate that the firing behavior of the fractional-order Hindmarsh-Rose model neuron has a higher complexity than that of the integer-order counterpart. Also, the synchronization phenomenon is investigated in the network of two electrically coupled fractional-order model neurons. We show that the synchronization rate increases as the fractional order decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin A, Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952, 117: 500–544

    Google Scholar 

  2. Magin R. Fractional Calculus in Bioengineering. Begell House, 2004

    Google Scholar 

  3. Auastasio T. The fractional-order dynamics of brainstem vestibule-oculomotor neurons. Biol Cybern, 1994, 72: 69–79

    Article  Google Scholar 

  4. Lundstrom B N, Higgs M H, Spain W J, et al. Fractional differentiation by neocortical pyramidal neurons. J Nature Neuroscience, 2008, 11: 1335–1342.

    Article  Google Scholar 

  5. Sabatier J, Agrawal O P, Tenreiro Machado J A. Advances in Fractional Calculus Theoretical Developments and Applications in Physics and Engineering. Springer, 2007

    Google Scholar 

  6. Wang Q Y, Shi X, Lu Q S. Synchronization Dynamics in The Coupled System of Neurons. Beijing: Science Press, 2008

    Google Scholar 

  7. Shen Y, Hou Z H, Xin H W. Transition to burst synchronization in coupled neuron networks. Phys Rev E, 2008, 77: 0319201.

    Article  Google Scholar 

  8. Meng P, Wang Q Y, Lu Q S. Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling. Cognitive Neurodynamics, 2013, 7: 197–212

    Article  Google Scholar 

  9. Wang H X, Wang Q Y, Lu Q S, et al. Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cognitive Neurodynamics, 2013, 7: 121–131.

    Article  Google Scholar 

  10. Pinto R D, Varona P, Volkovskii A R, et al. Synchronous behavior of two coupled electronic neurons. Phys Rev E, 2002, 62: 2644–1656

    Article  Google Scholar 

  11. Shuai J W, Durand D M. Phase synchronization in two coupled chaotic neurons. Physics Letters A, 1999, 264: 289–297

    Article  MATH  MathSciNet  Google Scholar 

  12. Dhamala M, Viktor K J, Ding M Z. Transitions to synchrony in coupled bursting neurons. Phys Rev Lett, 2004, 2: 028101

    Article  Google Scholar 

  13. Podlubny I. Fractional differential Equation. Academic Press, 1999.

    Google Scholar 

  14. Cafagna D, Grassi G. An effective method for detecting chaos in fractional-order systems. Int J Bifurcat Chaos, 2010, 20: 669–678

    Article  MATH  Google Scholar 

  15. Matignon D. Stability results for fractional differential equations with application to control processing. In: IMACS, IEEE-SMC, Lille, France, 1996

    Google Scholar 

  16. Ahmed E, El-Sayed A M A, El-Saka H A A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J Math Analysis Appl. 2007, 325: 542–553

    Article  MATH  MathSciNet  Google Scholar 

  17. Li C P, Zhang F R. A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 2011, 193: 27–47.

    Article  Google Scholar 

  18. Shilnikov A, Kolomiets M. Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. International Journal of Bifurcation and Chaos, 2008, 18: 2141–2168

    Article  MATH  MathSciNet  Google Scholar 

  19. Huang S F, Zhang J Q, Ding S J. State-to-state transitions in a Hindmarsh-Rose neuron system. Chin Phys Lett, 2009, 26: 050502

    Article  Google Scholar 

  20. Duan L X, Fan D G, Lu Q S, Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cognitive Neurodynamics, 2013, 7: 341–349

    Article  Google Scholar 

  21. Li C P, Peng G J. Chaos in Chen’s system with a fractional order. Chaos, Solitons & Fractals, 2004, 22: 443–450

    Article  MATH  MathSciNet  Google Scholar 

  22. Pincus S M. Approximate entropy as a measure of system complexity. PNAS, 1991, 88: 2297–2301

    Article  MATH  MathSciNet  Google Scholar 

  23. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D, 1983, 9: 189–208.

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang Y J, Li M S, Lu Q S. Firing Patterns and the Effect of Time-Delay Coupling on Synchronization of Two Coupled Chaotic ML Neurons. Journal of Dynamics and Control, 2009, 7: 19–23

    MATH  Google Scholar 

  25. Rosenblum M G, Pikovsky A S, Kurths J. From Phase to Lag Synchronization in Coupled Chaotic Oscillators. Phys Rev Lett 1997, 78: 4193–4196

    Article  Google Scholar 

  26. Pecora L M, Carroll T L. Master stability functions for synchronized coupled systems

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Kang, Y., Liu, Y. et al. Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neurons. Sci. China Technol. Sci. 57, 914–922 (2014). https://doi.org/10.1007/s11431-014-5531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5531-3

Keywords

Navigation